-
J Spinal Disord Tech · Feb 2006
Case ReportsContinuous EMG recordings and intraoperative electrical stimulation for identification and protection of cervical nerve roots during foraminal tumor surgery.
- LanJun Guo, Alfredo Quiñones-Hinojosa, Charles D Yingling, and Philip R Weinstein.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143-0112, USA
- J Spinal Disord Tech. 2006 Feb 1;19(1):37-42.
ObjectiveSpinal cord function is now routinely monitored with somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) during surgery for intraspinal cervical dumbbell and foraminal tumors. However, upper extremity nerve roots are also at risk during these procedures. Anatomic relations are frequently difficult to interpret because the nerve roots may be displaced by the tumor. We used electrical stimulation with compound muscle action potential (CMAP) recordings at multiple sites to identify the location and course of the involved nerve root and to provide real-time information regarding the functional status of the roots to predict postoperative outcome.MethodsTen patients were monitored during surgery for cervical dumbbell or foraminal tumors. SEPs and MEPs were monitored as a routine procedure. CMAPs were recorded from needle electrodes placed in the deltoid, biceps, triceps, and flexor carpi ulnaris muscles. Spontaneous electromyography (EMG) muscle activity was also continuously monitored. A handheld monopolar stimulation electrode was used to elicit evoked EMG responses to identify and trace the course of nerves in relation to the tumor. In four patients, the stimulation threshold was tested before and after tumor resection to predict postoperative nerve root function.ResultsElectrical stimulation with CMAP recording was successful in localizing nerve roots during tumor resection in all 10 patients. Monitoring predicted postoperative nerve root preservation after tumor removal in each case. It was possible to identify either by using low-level stimulation (<2.0 V) or by observing changes in spontaneous EMG amplitude if activation was present during surgical dissection. The monitoring of spontaneous muscle activity in response to direct or indirect surgical manipulation during tumor resection also provided continuous assessment of nerve root function and identified any physiologic disturbance induced by surgical manipulation.ConclusionsElectrical stimulation in the operating field and recording of CMAPs facilitated nerve root identification and predicted postoperative function during dissection and separation from ligamentous or neoplastic tissue in 10 patients. Electrical stimulation might also be useful to predict postoperative preservation of function when nerve root sacrifice is necessary and no motor response is detected intraoperatively.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.