• Molecular pharmacology · May 2007

    Activation of TRPA1 channels by the fatty acid amide hydrolase inhibitor 3'-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597).

    • Wende Niforatos, Xu-Feng Zhang, Marc R Lake, Karl A Walter, Torben Neelands, Thomas F Holzman, Victoria E Scott, Connie R Faltynek, Robert B Moreland, and Jun Chen.
    • Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6125, USA.
    • Mol. Pharmacol. 2007 May 1;71(5):1209-16.

    AbstractAs a member of the transient receptor potential (TRP) ion channel superfamily, the ligand-gated ion channel TRPA1 has been implicated in nociceptive function and pain states. The endogenous ligands that activate TRPA1 remain unknown. However, various agonists have been identified, including environmental irritants (e.g., acrolein) and ingredients of pungent natural products [e.g., allyl isothiocyanate (ITC), cinnamaldehyde, allicin, and gingerol]. In general, these agents are either highly reactive, nonselective, or not potent or efficacious, significantly limiting their utilities in the study of TRPA1 channel properties and biological functions. In a search for novel TRPA1 agonists, we identified 3'-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597), a potent and systemically active inhibitor of fatty acid amide hydrolase (FAAH). This enzyme is responsible for anandamide degradation and therefore has been pursued as an antinociceptive and antiepileptic drug target. Using Ca(2+) influx assays and patch-clamp techniques, we demonstrated that URB597 could activate heterologously expressed human and rat TRPA1 channels, whereas two other FAAH inhibitors (i.e., URB532 and Compound 7) had no effect. When applied to inside-out membrane patches expressing rat TRPA1, URB597 elicited single-channel activities with a unitary conductance of 40 pS. Furthermore, URB597 activated TRPA1 channels endogenously expressed in a population of rat dorsal root ganglion neurons that also responded to ITC. In contrast to its effect on TRPA1, URB597 inhibited TRPM8 and had no effects on TRPV1 or TRPV4. Thus, we conclude that URB597 is a novel agonist of TRPA1 and probably activates the channel through a direct gating mechanism.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…