• Molecular pharmacology · Feb 2010

    Comparative Study

    Analgesic (omega)-conotoxins CVIE and CVIF selectively and voltage-dependently block recombinant and native N-type calcium channels.

    • G Berecki, L Motin, A Haythornthwaite, S Vink, P Bansal, R Drinkwater, C I Wang, M Moretta, R J Lewis, P F Alewood, M J Christie, and D J Adams.
    • Department of Physiology and Pharmacology, University of Calgary, Alberta, T2N4N1 Canada. gberecki@ucalgary.ca
    • Mol. Pharmacol. 2010 Feb 1;77(2):139-48.

    AbstractNeuronal (N)-type Ca(2+) channel-selective omega-conotoxins have emerged as potential new drugs for the treatment of chronic pain. In this study, two new omega-conotoxins, CVIE and CVIF, were discovered from a Conus catus cDNA library. Both conopeptides potently displaced (125)I-GVIA binding to rat brain membranes. In Xenopus laevis oocytes, CVIE and CVIF potently and selectively inhibited depolarization-activated Ba(2+) currents through recombinant N-type (alpha1(B-b)/alpha(2)delta1/beta(3)) Ca(2+) channels. Recovery from block increased with membrane hyperpolarization, indicating that CVIE and CVIF have a higher affinity for channels in the inactivated state. The link between inactivation and the reversibility of omega-conotoxin action was investigated by creating molecular diversity in beta subunits: N-type channels with beta(2a) subunits almost completely recovered from CVIE or CVIF block, whereas those with beta(3) subunits exhibited weak recovery, suggesting that reversibility of the omega-conotoxin block may depend on the type of beta-subunit isoform. In rat dorsal root ganglion sensory neurons, neither peptide had an effect on low-voltage-activated T-type channels but potently and selectively inhibited high voltage-activated N-type Ca(2+) channels in a voltage-dependent manner. In rat spinal cord slices, both peptides reversibly inhibited excitatory monosynaptic transmission between primary afferents and dorsal horn superficial lamina neurons. Homology models of CVIE and CVIF suggest that omega-conotoxin/voltage-gated Ca(2+) channel interaction is dominated by ionic/electrostatic interactions. In the rat partial sciatic nerve ligation model of neuropathic pain, CVIE and CVIF (1 nM) significantly reduced allodynic behavior. These N-type Ca(2+) channel-selective omega-conotoxins are therefore useful as neurophysiological tools and as potential therapeutic agents to inhibit nociceptive pain pathways.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…