• Handb Exp Pharmacol · Jan 2007

    Review

    Protein kinases as potential targets for the treatment of pathological pain.

    • R R Ji, Y Kawasaki, Z Y Zhuang, Y R Wen, and Y Q Zhang.
    • Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MRB 604, Boston, MA 02115, USA. rrji@zeus.bwh.harvard.edu
    • Handb Exp Pharmacol. 2007 Jan 1(177):359-89.

    AbstractPathological pain or clinical pain refers to tissue injury-induced inflammatory pain and nerve injury-induced neuropathic pain and is often chronic. Pathological pain is an expression of neural plasticity that occurs both in the peripheral nervous system (e.g., primary sensory nociceptors), termed peripheral sensitization, and in the central nervous system (e.g., dorsal horn and brain neurons), termed central sensitization. Our insufficient understanding of mechanisms underlying the induction and maintenance of injury-induced neuronal plasticity hinders successful treatment for pathological pain. The human genome encodes 518 protein kinases, representing one of the largest protein families. There is growing interest in developing protein kinase inhibitors for the treatment of a number of diseases. Although protein kinases were not favored as targets for analgesics, studies in the last decade have demonstrated important roles of these kinases in regulating neuronal plasticity and pain sensitization. Multiple protein kinases have been implicated in peripheral and central sensitization following intense noxious stimuli and injuries. In particular, mitogen-activated protein kinases (MAPKs), consisting of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), are downstream to many kinases and are activated in primary sensory and dorsal horn neurons by nociceptive activity, growth factors and inflammatory mediators, contributing to the induction and maintenance of pain sensitization via posttranslational, translational, and transcriptional regulation. MAPKs are also activated in spinal glial cells (microglia and astrocytes) after injuries, leading to the synthesis of inflammatory mediators/neuroactive substances that act on nociceptive neurons, enhancing and prolonging pain sensitization. Inhibition of multiple kinases has been shown to attenuate inflammatory and neuropathic pain in different animal models. Development of specific inhibitors for protein kinases to target neurons and glial cells will shed light on the development of new therapies for debilitating chronic pain.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.