• J Neurosurg Spine · Jun 2010

    Comparative Study

    Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments.

    • Hong Bo Sim, Judith A Murovic, Bo Young Cho, T Jesse Lim, and Jon Park.
    • Department of Neurological Surgery, Stanford University Medical Center, Stanford, California 94305-5327, USA.
    • J Neurosurg Spine. 2010 Jun 1;12(6):700-8.

    ObjectBoth posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF) have been frequently undertaken for lumbar arthrodesis. These procedures use different approaches and cage designs, each of which could affect spine stability, even after the addition of posterior pedicle screw fixation. The objectives of this biomechanical study were to compare PLIF and TLIF, each accompanied by bilateral pedicle screw fixation, with regard to the stability of the fused and adjacent segments.MethodsFourteen human L2-S2 cadaveric spine specimens were tested for 6 different modes of motion: flexion, extension, right and left lateral bending, and right and left axial rotation using a load control protocol (LCP). The LCP for each mode of motion utilized moments up to 8.0 Nm at a rate of 0.5 Nm/second with the application of a constant compression follower preload of 400 N. All 14 specimens were tested in the intact state. The specimens were then divided equally into PLIF and TLIF conditions. In the PLIF Group, a bilateral L4-5 partial facetectomy was followed by discectomy and a single-level fusion procedure. In the TLIF Group, a unilateral L4-5 complete facetectomy was performed (and followed by the discectomy and single-level fusion procedure). In the TLIF Group, the implants were initially positioned inside the disc space posteriorly (TLIF-P) and the specimens were tested; the implants were then positioned anteriorly (TLIF-A) and the specimens were retested. All specimens were evaluated at the reconstructed and adjacent segments for range of motion (ROM) and at the adjacent segments for intradiscal pressure (IDP), and laminar strain.ResultsAt the reconstructed segment, both the PLIF and the TLIF specimens had significantly lower ROMs compared with those for the intact state (p < 0.05). For lateral bending, the PLIF resulted in a marked decrease in ROM that was statistically significantly greater than that found after TLIF (p < 0.05). In flexion-extension and rotation, the PLIF Group also had less ROM, however, unlike the difference in lateral bending ROM, these differences in ROM values were not statistically significant. Variations in the position of the implants within the disc space were not associated with any significant differences in ROM values (p = 0.43). Analyses of ROM at the adjacent levels L2-3, L3-4, and L5-S1 showed that ROM was increased to some degree in all directions. When compared with that of intact specimens, the ROMs were increased to a statistically significant degree at all adjacent segments in flexion-extension loads (p < 0.05); however, the differences in values among the various operative procedures were not statistically significant. The IDP and facet contact force for the adjacent L3-4 and L5-S1 levels were also increased, but these values were not statistically significantly increased from those for the intact spine (p > 0.05).ConclusionsRegarding stability, PLIF provides a higher immediate stability compared with that of TLIF, especially in lateral bending. Based on our findings, however, PLIF and TLIF, each with posterolateral fusions, have similar biomechanical properties regarding ROM, IDP, and laminar strain at the adjacent segments.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.