• Acta neuropathologica · Aug 2005

    Evaluation of the apoptosis-related proteins of the BCL-2 family in the traumatic penumbra area of the rat model of cerebral contusion, treated by hyperbaric oxygen therapy: a quantitative immunohistochemical study.

    • Eugene Vlodavsky, Eilam Palzur, Moshe Feinsod, and Jean F Soustiel.
    • Institute of Pathology, Rambam Medical Center and Faculty of Medicine, Technion-Israel Institute of Technology, POB 9602, 31096, Haifa, Israel. vlodavsky@rambam.health.gov.il
    • Acta Neuropathol. 2005 Aug 1;110(2):120-6.

    AbstractThe growth and progression of traumatic brain injury (TBI) lesions depend significantly on developments in the traumatic penumbra area, perilesional region, where delayed neuronal death occurs. Recent data supports the important role of apoptosis in delayed cell death in TBI. Previously we demonstrated a significant reduction of apoptosis in traumatic penumbra in animals treated by hyperbaric oxygen (HBO). In this study we evaluate the expression of apoptosis-related proteins of the Bcl-2 family (Bcl-2, Bax and Bcl-xL) in the traumatic penumbra area in correlation with the extent of apoptosis in the rat model of focal cerebral contusion, treated by HBO. Sprague-Dawley rats underwent cortical dynamic deformation, some with subsequent hypoxemia. A group of both hypoxemic and non-hypoxemic animals was treated by HBO. The pathological study was based on immunohistochemical staining of the brain sections for Bcl-2, Bax and Bcl-xL with quantitative evaluation of staining by image analysis. The expression of Bcl-2 in hypoxemic animals was lower than in non-hypoxemic animals, but a significant increase in Bcl-2 expression was seen in both groups after HBO treatment. Bcl-xL also demonstrated an increase after HBO treatment but less significant. Staining for Bax protein did not demonstrate significant change after treatment. These data correlate well with the reduction of TUNEL-positive cells in traumatic penumbra after HBO treatment. We concluded that the apoptotic mechanisms are important in delayed cell death in TBI and that post-traumatic hypoxemia increases the intensity of apoptosis, probably through a decrease in Bcl-2 and Bcl-xL expression which normally repress apoptosis. The beneficial effect of HBO treatment in our model of brain contusion correlates well with the increased expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL) following treatment and the appropriate decrease in the extent of apoptosis. In light of these results, the usage of HBO is justified as neuroprotective treatment in TBI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.