• J. Thorac. Cardiovasc. Surg. · May 2016

    Robot-assisted real-time magnetic resonance image-guided transcatheter aortic valve replacement.

    • Justin G Miller, Ming Li, Dumitru Mazilu, Tim Hunt, and Keith A Horvath.
    • Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Md.
    • J. Thorac. Cardiovasc. Surg. 2016 May 1; 151 (5): 1407-12.

    BackgroundReal-time magnetic resonance imaging (rtMRI)-guided transcatheter aortic valve replacement (TAVR) offers improved visualization, real-time imaging, and pinpoint accuracy with device delivery. Unfortunately, performing a TAVR in a MRI scanner can be a difficult task owing to limited space and an awkward working environment. Our solution was to design a MRI-compatible robot-assisted device to insert and deploy a self-expanding valve from a remote computer console. We present our preliminary results in a swine model.MethodsWe used an MRI-compatible robotic arm and developed a valve delivery module. A 12-mm trocar was inserted in the apex of the heart via a subxiphoid incision. The delivery device and nitinol stented prosthesis were mounted on the robot. Two continuous real-time imaging planes provided a virtual real-time 3-dimensional reconstruction. The valve was deployed remotely by the surgeon via a graphic user interface.ResultsIn this acute nonsurvival study, 8 swine underwent robot-assisted rtMRI TAVR for evaluation of feasibility. Device deployment took a mean of 61 ± 5 seconds. Postdeployment necropsy was performed to confirm correlations between imaging and actual valve positions.ConclusionsThese results demonstrate the feasibility of robotic-assisted TAVR using rtMRI guidance. This approach may eliminate some of the challenges of performing a procedure while working inside of an MRI scanner, and may improve the success of TAVR. It provides superior visualization during the insertion process, pinpoint accuracy of deployment, and, potentially, communication between the imaging device and the robotic module to prevent incorrect or misaligned deployment.Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation  

      Add institutional full text...

    Notes

    hide…