• Pain · Apr 2016

    A possible neural mechanism for photosensitivity in chronic pain.

    • Melissa E Martenson, Omar I Halawa, Karen J Tonsfeldt, Charlene A Maxwell, Nora Hammack, Scott D Mist, Mark E Pennesi, Robert M Bennett, Kim M Mauer, Kim D Jones, and Mary M Heinricher.
    • Departments of aNeurological Surgery, and bAnesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA cSchool of Nursing, Oregon Health & Science University, Portland, OR, USA dCasey Eye Institute, Oregon Health & Science University, Portland, OR, USA eDepartment of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
    • Pain. 2016 Apr 1; 157 (4): 868-78.

    AbstractPatients with functional pain disorders often complain of generalized sensory hypersensitivity, finding sounds, smells, or even everyday light aversive. The neural basis for this aversion is unknown, but it cannot be attributed to a general increase in cortical sensory processing. Here, we quantified the threshold for aversion to light in patients with fibromyalgia, a pain disorder thought to reflect dysregulation of pain-modulating systems in the brain. These individuals expressed discomfort at light levels substantially lower than that of healthy control subjects. Complementary studies in lightly anesthetized rat demonstrated that a subset of identified pain-modulating neurons in the rostral ventromedial medulla unexpectedly responds to light. Approximately half of the pain-facilitating "ON-cells" and pain-inhibiting "OFF-cells" sampled exhibited a change in firing with light exposure, shifting the system to a pronociceptive state with the activation of ON-cells and suppression of OFF-cell firing. The change in neuronal firing did not require a trigeminal or posterior thalamic relay, but it was blocked by the inactivation of the olivary pretectal nucleus. Light exposure also resulted in a measurable but modest decrease in the threshold for heat-evoked paw withdrawal, as would be expected with engagement of this pain-modulating circuitry. These data demonstrate integration of information about light intensity with somatic input at the level of single pain-modulating neurons in the brain stem of the rat under basal conditions. Taken together, our findings in rodents and humans provide a novel mechanism for abnormal photosensitivity and suggest that light has the potential to engage pain-modulating systems such that normally innocuous inputs are perceived as aversive or even painful.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.