• Brain research · Sep 2011

    Rate dependency of vibrotactile stimulus modulation.

    • E Francisco, J Holden, Z Zhang, O Favorov, and M Tommerdahl.
    • Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, NC 27599, USA.
    • Brain Res. 2011 Sep 30;1415:76-83.

    AbstractAdaptation has a pronounced impact on the perception of vibrotactile stimuli. Previously, we demonstrated that the duration of vibrotactile conditioning was directly proportional to the impact that adaptation has on sensory perception (Tannan et al., 2007b). Prior reports had proposed that the impact of adaptation on the perceived magnitude of vibrotactile stimuli was specific to the conditioning amplitude (Goble and Hollins, 1993), and this concept led us to hypothesize that if the amplitude of a vibrotactile stimulus was changed continuously, that this modulation would itself impact adaptation. In order to test this idea, two repetitive vibrotactile stimuli were simultaneously delivered to two adjacent finger tips (D2 and D3). In a matching task, a standard stimulus was maintained at constant amplitude (defined as "stationary"), while the amplitude of the test stimuli was increased at a fixed rate (i.e., 10 μm/s; defined as "non-stationary") from a null value up to the level that a subject (n=50) indicated that the two stimuli were perceived to be identical. Changing the standard amplitude yielded results consistent with Weber's Law and changing the modulation rate yielded results that were consistent with our initial hypothesis that faster modulation rates would lead to the non-stationary stimulus as being less adapted. A comparative study, using the above-described method, was conducted with 12 autism subjects who were previously reported to have below normal adaptation metrics (Tannan et al., 2008). The findings of this pilot autism study suggest that rate dependent modulation of vibrotactile stimuli could provide a more sensitive metric of adaptation, as the observations demonstrate a bimodal distribution within the autism spectrum.Copyright © 2011 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…