• J. Am. Coll. Cardiol. · Feb 1993

    Pulmonary artery hemodynamics in primary pulmonary hypertension.

    • W K Laskey, V A Ferrari, H I Palevsky, and W G Kussmaul.
    • Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia.
    • J. Am. Coll. Cardiol. 1993 Feb 1;21(2):406-12.

    ObjectivesThe present investigation compared and contrasted steady and pulsatile pulmonary hemodynamics at rest and during exercise in patients with primary pulmonary hypertension and normal control subjects.BackgroundA complete description of the relation between pressure and flow in the pulmonary circulation includes both steady and pulsatile hemodynamic behavior. Patients with primary pulmonary hypertension provide a unique opportunity to study the effects of primary alterations in pulmonary vasculature on pulmonary artery vascular hydraulic load.MethodsCatheter tip pressure and velocity recordings from the main pulmonary artery in 8 patients with primary pulmonary hypertension and 10 control subjects were used to derive the pulmonary artery input impedance spectrum and the extent of pulse wave reflection at rest and during exercise.ResultsAs expected, in patients with primary pulmonary hypertension, mean pulmonary artery pressure (50 +/- 10 mm Hg) and pulmonary vascular resistance (880 +/- 446 dynes.s.cm-5) were markedly elevated at rest and remained so during exercise (mean pressure 71 +/- 15 mm Hg, mean resistance 750 +/- 530 dynes.s.cm-5). Pulmonary artery characteristic impedance was elevated at rest and did not change with exercise (rest 55 +/- 25 dynes.s.cm-5; exercise 66 +/- 33 dynes.s.cm-5). Measures of arterial wave reflection indicated that the extent of wave reflection in the pulmonary bed in those with primary pulmonary hypertension is large at rest (reflection coefficient 0.89 +/- 0.09) and that the composite reflected wave arrived during the midportion of right ventricular ejection. Although the extent of wave reflection decreased with exercise (reflection coefficient 0.81 +/- 0.10, p < 0.05), the magnitude and timing of these reflections remained adverse. Furthermore, in patients with primary pulmonary hypertension, the stroke volume response to exercise was strongly related to rest levels of pulmonary artery diastolic pressure, pulmonary vascular resistance and the reflection factor, whereas no such relation was found in the control subjects.ConclusionsIn addition to the expected abnormalities in steady measures of pulmonary artery hemodynamics at rest in patients with primary pulmonary hypertension, rest and exercise measures of oscillatory behavior (characteristic impedance and pulse wave reflection) are perturbed. Measures of steady and pulsatile behavior, particularly wave reflection, appear to have an important role in the exercise response of these patients.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.