• Anesthesia and analgesia · Nov 2013

    The Distinct Effects of Lipid Emulsions Used for "Lipid Resuscitation" on Gating and Bupivacaine-Induced Inhibition of the Cardiac Sodium Channel Nav1.5.

    • Wolfgang Koppert, Andreas Leffler, Felix Nadrowitz, Carsten Stoetzer, Nilufar Foadi, Jörg Ahrens, Florian Wegner, Angelika Lampert, and Jeanne de la Roche.
    • From the Departments of *Anesthesiology and Intensive Care Medicine and †Neurology, Hannover Medical School, Hannover, Germany; and ‡Institute for Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
    • Anesth. Analg.. 2013 Nov 1;117(5):1101-8.

    BackgroundSystemic administration of lipid emulsions is an established treatment for local anesthetic intoxication. However, it is unclear by which mechanisms lipids achieve this function. The high cardiac toxicity of the lipophilic local anesthetic bupivacaine probably results from a long-lasting inhibition of the cardiac Na channel Nav1.5. In this study, we sought to determine whether lipid emulsions functionally interact with Nav1.5 or counteract inhibition by bupivacaine.MethodsHuman embryonic kidney cells expressing human Nav1.5 were investigated by whole-cell patch clamp. The effects of Intralipid® and Lipofundin® were explored on functional properties and on bupivacaine-induced inhibition.ResultsIntralipid and Lipofundin did not affect the voltage dependency of activation, but induced a small hyperpolarizing shift of the steady-state fast inactivation and impaired the recovery from fast inactivation. Lipofundin, but not Intralipid, induced a concentration-dependent but voltage-independent tonic block (42% ± 4% by 3% Lipofundin). The half-maximal inhibitory concentration (IC50) values for tonic block by bupivacaine (50 ± 4 µM) were significantly increased when lipids were coapplied (5% Intralipid: 196 ± 22 µM and 5% Lipofundin: 103 ± 8 µM). Use-dependent block by bupivacaine at 10 Hz was also reduced by both lipid emulsions. Moreover, the recovery of inactivated channels from bupivacaine-induced block was faster in the presence of lipids.ConclusionsOur data indicate that lipid emulsions reduce rather than increase availability of Nav1.5. However, both Intralipid and Lipofundin partly relieve Nav1.5 from block by bupivacaine. These effects are likely to involve not only a direct interaction of lipids with Nav1.5 but also the ability of lipid emulsions to absorb bupivacaine and thus reduce its effective concentration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.