• Chest · Aug 1995

    Comparative Study

    Lung scanning and exercise testing for the prediction of postoperative performance in lung resection candidates at increased risk for complications.

    • C T Bolliger, C Wyser, H Roser, M Solèr, and A P Perruchoud.
    • Department of Internal Medicine, University Hospital, Basel, Switzerland.
    • Chest. 1995 Aug 1;108(2):341-8.

    ObjectiveTo analyze the value of preoperative lung scanning and exercise testing for the prediction of postoperative complications and of the short- as well as long-term performance in lung resection candidates at increased risk for complications.DesignProspective clinical trial.SettingClinical pulmonary function laboratory in a university teaching hospital.PatientsTwenty-five (mean age, 63 years; 17 men) of 84 consecutive lung resection candidates were considered at increased risk for postoperative complications due to impaired pulmonary function (FEV1 < 2 L or diffusion of carbon monoxide [DCO] < 50% predicted, or FEV1 and DCO < or = 80% predicted combined with New York Heart Association dyspnea index > or = 2).InterventionsCandidates underwent radionuclide ventilation/perfusion scans and exercise testing to predict postoperative (= ppo) values for FEV1, DCO, and maximal O2 uptake (VO2max). They all underwent thoracotomy for neoplastic lesions; 7 had pneumonectomies, 18 lobectomies. Six patients had postoperative complications (within 30 days), of whom three died. Three and 6 months postoperatively, pulmonary function tests and VO2max were repeated.Measurements And ResultsIn the 22 survivors, the observed values were then compared with the predicted values. At 3 months, there were excellent correlations (absolute/predicted values): for FEV1 r = 0.78 and 0.81; for DCO, r = 0.77 and 0.74; and for VO2max, r = 0.71 and 0.83. The means of FEV1 and VO2max did not differ from the predicted values, whereas the predicted DCO was lower than the observed value (mL/min/mm Hg: 15.1 vs 17.9; percent predicted: 59.6 vs 70.9) (p < 0.05). At 6 months, correlations remained very good for FEV1 (r = 0.81 and 0.84) and for DCO (r = 0.76 and 0.74), but had decreased for VO2max to 0.56 and 0.65, respectively. All means were higher than predicted (p < 0.05) owing to recovery in the lobectomy group. Patients with postoperative complications (group B) had a lower preoperative VO2max in percent predicted (62.8 +/- 7.5% vs 84.6 +/- 19.7%) (p < 0.01) and also a lower VO2max-ppo (10.6 +/- 3.6 vs 14.8 +/- 3.5 mL/kg/min and 44.3 +/- 13.5 vs 68.0 +/- 20.7% predicted) (p < 0.05) than patients without complications (group A). A VO2max-ppo < 10 mL/kg/min was associated with a 100% mortality. Although FEV1-ppo and DCO-ppo were lower in group B, the difference did not reach significance.ConclusionsRadionuclide-based calculations of postoperative VO2max are predictive of operative morbidity and mortality: a VO2max-ppo of < 10 mL/kg/min may indicate inoperability. Further, short-term postoperative performance is accurately predicted by FEV1-ppo and VO2max-ppo, but long-term function is underestimated after lobectomy.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…