• Pain · Feb 1992

    Responses of motor units during the hind limb flexion withdrawal reflex evoked by noxious skin heating: phasic and prolonged suppression by midbrain stimulation and comparison with simultaneously recorded dorsal horn units.

    • E Carstens and I G Campell.
    • Department of Animal Physiology, University of California, Davis 95616.
    • Pain. 1992 Feb 1;48(2):215-26.

    AbstractIn rats anesthetized with sodium pentobarbital, we quantitatively analyzed descending modulation from the midbrain of a nociceptive flexion withdrawal reflex and responses of associated spinal neurons. We monitored the isometric force of hind limb withdrawal elicited by noxious heat stimuli (42-54 degrees C, 10 sec) on the hind paw. In one series of experiments, single-fiber EMG electrodes recorded responses of single muscle fibers (i.e., motor units) in biceps femoris during the hind limb withdrawal, without and during electrical stimulation in the midbrain periaqueductal gray (PAG) or lateral midbrain reticular formation (LRF). In a second series, responses of single lumbar dorsal horn neurons were also recorded simultaneously. Withdrawal force and associated motor unit responses were suppressed for prolonged periods (4 to greater than 60 min) following the initial episode of PAG or LRF stimulation in 40% of the rats, while they were suppressed phasically (i.e., only during brain stimulation) in the remainder. Motor unit responses increased in a graded fashion with increasing skin stimulus temperature from threshold (45 degrees C) to 54 degrees C. During PAG stimulation, the slope of the rate coding function was reduced with no change in threshold temperature. During LRF stimulation the rate coding function was shifted toward higher temperatures with increased threshold (47 degrees C). In 14 experiments 43 paired recordings were made from a dorsal horn and a motor unit during hind limb withdrawals. Mean latency to onset and peak of the heat-evoked response was shorter for dorsal horn compared to motor units. In 6/14 rats withdrawal force and motor unit responses were significantly suppressed for more than 8 min following mechanical placement of the stimulating electrodes and/or the initial episode of midbrain stimulation, while the simultaneously recorded dorsal horn unit responses remained constant. Following supplemental administration of pentobarbital (10-30 mg/kg i.v.), withdrawals and motor unit responses to heat were suppressed while dorsal horn unit responses were unchanged or enhanced. Also, in 12/42 cases, withdrawals and motor unit responses decremented markedly during the initial 3 trials of heat, while simultaneously recorded dorsal horn unit responses remained stable. These results indicate that the withdrawal reflex and associated motor units can be markedly suppressed in the absence of concomitant changes in responsiveness of dorsal horn neurons, and are discussed in terms of the neurocircuitry of spinal flexor reflexes and their descending modulation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.