• Clinical biomechanics · Jan 2012

    Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density.

    • A Sermon, V Boner, K Schwieger, A Boger, S Boonen, P Broos, G Richards, and M Windolf.
    • Biomedical Services AO Research Institute, Davos Platz, Switzerland. an.sermon@uzleuven.be
    • Clin Biomech (Bristol, Avon). 2012 Jan 1;27(1):71-6.

    BackgroundHelically shaped cephalic implants have proven their benefit to provide an improved stabilization of unstable hip fractures. However, cut out ratios up to 3.6% still occur. This in vitro study evaluated the biomechanical performance of a novel cement augmentation technique of the Proximal Femoral Nail Antirotation in surrogate femora.MethodsFour study groups were formed out of 24 polyurethane foam specimens with low density. Proximal Femoral Nail Antirotation blades were implanted, either non-augmented, or augmented using 3ml of injectable Polymethylmethacrylate bone-cement. The influence of implant mal-positioning was investigated by placing the blade either centered in the femoral head or off-centric in an anteroposterior direction. All specimens underwent cyclic loading under physiological conditions. Starting at 1000 N, the load was monotonically increased by 0.1N/cycle until construct failure. Movement of the head was identified by means of optical motion tracking. Non-parametric test statistics were carried out on the cycles to failure, to compare between study groups.FindingsCompared to control samples; augmented samples showed a significantly increased number of cycles to failure (P=0.012). In the groups with centric position of the Proximal Femoral Nail Antirotation blade, cement augmentation led to an increase in loading cycles of 225%. In the groups with off-centric positioning of the blade, this difference was even more accentuated (933%).InterpretationCement augmentation of the Proximal Femoral Nail Antirotation blade with small amounts of bone-cement for treatment of osteoporotic hip fractures clearly enhances fixation stability and carries high potential for clinical application.Copyright © 2011 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…