-
- Shruti V Kabadi, Marie Hanscom, Alan I Faden, Boris Sabirzhanov, Kelsey Guanciale, Juliane Faden, Katherine Cardiff, and Charles Jeremy Bengson.
- * Postdoctoral Research Fellow, † Assistant Professor, ‡ Research Associate, § Postdoctoral Research Fellow, ‖ Research Assistant, # David S. Brown Professor and Director of the Center for Shock Trauma and Anesthesiology Research (STAR), Department of Anesthesiology and Center for STAR, University of Maryland School of Medicine, Baltimore, Maryland.
- Anesthesiology. 2013 Dec 1;119(6):1370-88.
BackgroundMicroglial activation is implicated in delayed tissue damage after traumatic brain injury (TBI). Activation of microglia causes up-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, with the release of reactive oxygen species and cytotoxicity. Propofol appears to have antiinflammatory actions. The authors evaluated the neuroprotective effects of propofol after TBI and examined in vivo and in vitro whether such actions reflected modulation of NADPH oxidase.MethodsAdult male rats were subjected to moderate lateral fluid percussion TBI. Effect of propofol on brain microglial activation and functional recovery was assessed up to 28 days postinjury. By using primary microglial and BV2 cell cultures, the authors examined propofol modulation of lipopolysaccharide and interferon-γ-induced microglial reactivity and neurotoxicity.ResultsPropofol improved cognitive recovery after TBI in novel object recognition test (48 ± 6% for propofol [n = 15] vs. 30 ± 4% for isoflurane [n = 14]; P = 0.005). The functional improvement with propofol was associated with limited microglial activation and decreased cortical lesion volume and neuronal loss. Propofol also attenuated lipopolysaccharide- and interferon-γ-induced microglial activation in vitro, with reduced expression of inducible nitric oxide synthase, nitric oxide, tumor necrosis factor-α, interlukin-1β, reactive oxygen species, and NADPH oxidase. Microglial-induced neurotoxicity in vitro was also markedly reduced by propofol. The protective effect of propofol was attenuated when the NADPH oxidase subunit p22 was knocked down by small interfering RNA. Moreover, propofol reduced the expression of p22 and gp91, two key components of NADPH oxidase, after TBI.ConclusionThe neuroprotective effects of propofol after TBI appear to be mediated, in part, through the inhibition of NADPH oxidase.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.