• Neurobiology of disease · Mar 2012

    NO-dependent protective effect of VEGF against excitotoxicity on layer VI of the developing cerebral cortex.

    • Faiza El Ghazi, Arnaud Desfeux, Carole Brasse-Lagnel, Christian Roux, Celine Lesueur, Danielle Mazur, Isabelle Remy-Jouet, Vincent Richard, Sylvie Jégou, Vincent Laudenbach, Stephane Marret, Soumeya Bekri, Vincent Prevot, and Bruno J Gonzalez.
    • EA NeoVasc 4309, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Rouen Institute for Biomedical Research, European Institute for Peptide Research (IFR 23), University of Rouen, Rouen, France.
    • Neurobiol. Dis. 2012 Mar 1;45(3):871-86.

    AbstractIn industrialized countries, cerebral palsy affects 2.5‰ of preterm and term infants. At a neurochemical level, the massive release of glutamate constitutes a major process leading to excitotoxicity and neonatal brain lesions. Previous studies, conducted in the laboratory, revealed that, in (δ/δ)VEGF(A) transgenic mice, glutamate-induced brain lesions are exacerbated suggesting that VEGF(A) could play a protective action against excitotoxicity. Using a model of cultured cortical brain slices, the aim of the study was to characterize the central effects of VEGF against glutamate-induced excitotoxicity in neonates. Exposure of brain slices to glutamate induced a strong increase of necrotic cell death in the deep cortical layer VI and a decrease of apoptotic death in superficial layers II-IV. When administered alone, a 6-h treatment with VEGF(A) had no effect on both apoptotic and necrotic deaths. In contrast, VEGF(A) abolished the glutamate-induced necrosis observed in layer VI. While MEK and PI3-K inhibitors had no effect on the protective action of VEGF(A), L-NAME, a pan inhibitor of NOS, abrogated the effect of VEGF(A) and exacerbated the excitotoxic action of glutamate. Calcimetry experiments performed on brain slices revealed that VEGF(A) reduced the massive calcium influx induced by glutamate in layer VI and this effect was blocked by L-NAME. Neuroprotective effect of VEGF(A) was also blocked by LNIO and NPLA, two inhibitors of constitutive NOS, while AGH, an iNOS inhibitor, had no effect. Nitrite measurements, electron paramagnetic resonance spectroscopy and immunohistochemistry indicated that glutamate was a potent inducer of NO production via activation of nNOS in the cortical layer VI. In vivo administration of nNOS siRNA promoted excitotoxicity and mimicked the effects of L-NAME, LNIO and NPLA. A short-term glutamate treatment increased nNOS Ser1412 phosphorylation, while a long-term exposure inhibited nNOS/NR2B protein-protein interactions. Altogether, these findings indicate that, in deep cortical layers of mice neonates, glutamate stimulates nNOS activity. Contrasting with mature brain, NO production induced by high concentrations of glutamate is neuroprotective and is required for the anti-necrotic effect of VEGF(A).Copyright © 2011 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.