• J Spinal Disord Tech · Dec 2006

    Comparative Study

    Stepwise methodology for plain radiographic assessment of pedicle screw placement: a comparison with computed tomography.

    • Theodore J Choma, Francis Denis, John E Lonstein, Joseph H Perra, James D Schwender, Timothy A Garvey, and William J Mullin.
    • University of Missouri, Columbia, MO, USA.
    • J Spinal Disord Tech. 2006 Dec 1;19(8):547-53.

    ObjectiveThe objective of this study is to evaluate the effectiveness of a specific methodology for plain radiographic assessment of lumbar pedicle screw position.PurposeTo evaluate the effectiveness of using orthogonal plain radiographs and a systematic method of interpretation, developed by the senior author, in assessing the placement of lumbar and lumbosacral pedicle screws.Study DesignThis was an adult cadaver study of the accuracy of using plain radiographs or computed tomography to assess pedicle screw position. Plain radiographs were performed and compared with computed tomography (CT) scans. Gross anatomic dissections were performed to directly confirm screw position. Variables, including screw material, radiographic view, and screw dimensions, were assessed for their effect on the ability of physicians to determine pedicle screw position. Multiple readers were included in the study, including 1 spine Fellow, 3 experienced orthopedic spine surgeons, and 1 neuroradiologist.MethodsFive adult cadaveric spines were instrumented with titanium pedicle screws from L1 to S1. Screws were placed outside the confines of the pedicle in all 4 quadrants or within the pedicle using a Latin-Square design. Each cadaver was imaged with orthogonal radiographs and high-resolution CT scans. The spines were then reimaged after the instrumentation was replaced with stainless steel screws placed in the identical position. Finally, each spine was dissected to assess the exact position of the screws. Images were read in a blinded fashion by 1 spine fellow, 2 staff surgeons, and a staff radiologist. The results were compared with the known screw positions at dissection.ResultsIn total, 120 pedicle screws were placed, 44 (38%) outside the confines of the pedicle. Sensitivity, defined as the percent of the misplaced screws that were correctly identified, was similar across the 3 diagnostic tests, but markedly improved when all CT formats were considered together. Similarly, specificity, defined as the percent of screws correctly read as being placed within the pedicle, was independent of radiographic examination. Sensitivity of the radiographic technique was 70.1% and specificity was 83.0%, whereas sensitivity for CT scans was 84.7% and specificity was 89.7%. There was an observed association with anatomic level, with a consistently less accuracy in detecting screw position at L1 with plain x-ray (P=0.001). Additionally, correct position of stainless steel screws was more difficult to detect as compared with titanium (P=0.033) using either x-rays or CT. Other variables examined, such as screw length and screw diameter, did not have an effect on the ability to read the positioning.ConclusionsCT scans, often considered the "gold standard" for clinical assessment of pedicle screw placement, have limitations when validated with gross anatomical dissection. The described systematic method for evaluating pedicle screw placement using orthogonal plain radiographs attained accuracy comparable to high-resolution CT scans.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.