• Brain Res. Mol. Brain Res. · Nov 2003

    In vivo heat-shock response in the brain: signalling pathway and transcription factor activation.

    • Paola Maroni, Paola Bendinelli, Laura Tiberio, Francesca Rovetta, Roberta Piccoletti, and Luisa Schiaffonati.
    • Istituto di Patologia Generale, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy.
    • Brain Res. Mol. Brain Res. 2003 Nov 6;119(1):90-9.

    AbstractWe analysed the expression of the hsp70 gene, the phosphorylation status of different members of the mitogen-activated protein kinase (MAPK) family, the behaviour of the Akt-GSK3 pathway, as well as the DNA-binding activity of several transcription factors, potential targets of these kinases, in the brain of rats exposed to a fever-like increase in body temperature. Two different brain regions, the cerebellum and the hippocampus, were studied. Hyperthermia caused HSF activation and the induction of hsp70 mRNA and protein to a greater extent in the cerebellum than in the hippocampus. In the cerebellum, ERK1/2 and p38 MAPK phosphorylation were increased by hyperthermia and returned to basal levels during the recovery from heat stress, whereas JNK3 phosphorylation decreased and recovered to above control levels within 60 min of recovery. JNK1 phosphorylation was never modified. In the hippocampus, ERK phosphorylation did not increase but rather decreased, whereas the behaviour of p38 MAPK and JNK was similar to that observed in the cerebellum. Akt phosphorylation increased after hyperthermia and was accompanied by an increased phosphorylation of two substrates, GSK3 and FKHRL1, in both brain areas, with a major effect in the cerebellum. DNA-binding activities of AP-1, NF-kappaB, and MEF2 were activated by heat shock in the cerebellum, whereas only MEF2 was activated in the hippocampus. Our data indicate that a physiologically relevant increase in body temperature induces brain injury and survival response to it as demonstrated by induction of hsp70 gene expression and activation of specific signalling pathways. Reprogramming of gene expression, by the specific transcription factors activated, probably plays a central role in cell adaptation and survival to heat stress. The hippocampus shows less responsiveness to hyperthermia than the cerebellum.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.