-
Comparative Study
Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon.
- S L de Sousa, R Dickinson, W R Lieb, and N P Franks.
- The Blackett Laboratory, Imperial College of Science, Technology, and Medicine, London, United Kingdom.
- Anesthesiology. 2000 Apr 1;92(4):1055-66.
BackgroundThe mechanisms by which the inhalational general anesthetics isoflurane and xenon exert their effects are unknown. Moreover, there have been surprisingly few quantitative studies of the effects of these agents on central synapses, with virtually no information available regarding the actions of xenon.MethodsThe actions of isoflurane and xenon on gamma-aminobutyric acid-mediated (GABAergic) and glutamatergic synapses were investigated using voltage-clamp techniques on autaptic cultures of rat hippocampal neurons, a preparation that avoids the confounding effects of complex neuronal networks.ResultsIsoflurane exerts its greatest effects on GABAergic synapses, causing a marked increase in total charge transfer (by approximately 70% at minimum alveolar concentration) through the inhibitory postsynaptic current. This effect is entirely mediated by an increase in the slow component of the inhibitory postsynaptic current. At glutamatergic synapses, isoflurane has smaller effects, but it nonetheless significantly reduces the total charge transfer (by approximately 30% at minimum alveolar concentration) through the excitatory postsynaptic current, with the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor-mediated components being roughly equally sensitive. Xenon has no measurable effect on GABAergic inhibitory postsynaptic currents or on currents evoked by exogenous application of GABA, but it substantially inhibits total charge transfer (by approximately 60% at minimum alveolar concentration) through the excitatory postsynaptic current. Xenon selectively inhibits the NMDA receptor-mediated component of the current but has little effect on the AMPA/kainate receptor-mediated component.ConclusionsFor both isoflurane and xenon, the most important targets appear to be postsynaptic. The authors' results show that isoflurane and xenon have very different effects on GABAergic and glutamatergic synaptic transmission, and this may account for their differing pharmacologic profiles.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.