• Anesthesiology · Oct 1996

    Antinociceptive response to nitrous oxide is mediated by supraspinal opiate and spinal alpha 2 adrenergic receptors in the rat.

    • T Z Guo, L Poree, W Golden, J Stein, M Fujinaga, and M Maze.
    • Anesthesiology Service, Department of Veterans Affairs, Palo Alto, California, USA.
    • Anesthesiology. 1996 Oct 1;85(4):846-52.

    BackgroundDespite nearly 150 years of clinical use, the mechanism(s) of action of nitrous oxide (N2O) remains in doubt. In some but not all studies the analgesic properties of N2O can be attenuated by opiate receptor antagonists. The purported mechanism for the opiate antagonistic effect relates to the finding that N2O increases supraspinal levels of endogenous opiates, although this finding has been disputed. Based on the observations that (1) N2O promotes the release of catecholamines, including the endogenous alpha 2 adrenergic agonist norepinephrine, and (2) that descending noradrenergic inhibitory pathways are activated by opioid analgesics, this study sought to determine whether alpha 2 adrenergic receptors are involved in the antinociceptive action of nitrous oxide.MethodsInstitutional approval was obtained for the study. Rats breathed 70% N2O and 30% O2 in an enclosed chamber. After a 30-min exposure, significant antinociception was indicated by an increase in the latency response to a noxious stimulus (tail-flick latency). The tail-flick latency was tested in rats exposed to 70% N2O after either systemic or regional (intrathecal or intracerebroventricular) injections with either competitive (atipamezole; yohimbine) or noncompetitive (N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) alpha 2 adrenoceptor antagonists, or the opiate receptor antagonist naloxone.ResultsWhen administered systemically, both the opiate (naloxone) and alpha 2 adrenoceptor antagonists (atipamezole, yohimbine, and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline) blocked the enhanced tail-flick latency response to N2O-Naloxone administered intracerebroventricularly, but not intrathecally, blocked the enhanced tail-flick latency response to N2O. Conversely, atipamezole administered intrathecally, but not intracerebroventricularly, blocked the enhanced tail-flick latency response to N2O.ConclusionsThese data suggest that both supraspinal opiate and spinal alpha 2 adrenoceptors play a mediating role in the antinociceptive response to N2O in rats. A possible mechanism may involve a descending inhibitory noradrenergic pathway that may be activated by opiate receptors in the periaqueductal gray region of the brain stem in the rat after exposure to N2O.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.