• Spine J · May 2009

    Cortical bone trajectory for lumbar pedicle screws.

    • B G Santoni, R A Hynes, K C McGilvray, G Rodriguez-Canessa, A S Lyons, M A W Henson, W J Womack, and C M Puttlitz.
    • Orthopaedic Bioengineering Research Laboratory, School of Biomedical Engineering, Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523-1374, USA.
    • Spine J. 2009 May 1;9(5):366-73.

    Background ContextAchieving solid implant fixation to osteoporotic bone presents a clinical challenge. New techniques and devices are being designed to increase screw-bone purchase of pedicle screws in the lumbar spine via a novel cortical bone trajectory that may improve holding screw strength and minimize loosening. Preliminary clinical evidence suggests that this new trajectory provides screw interference that is equivalent to the more traditionally directed trajectory for lumbar pedicle screws. However, a biomechanical study has not been performed to substantiate the early clinical results.PurposeEvaluate the mechanical competence of lumbar pedicle screws using a more medial-to-lateral path (ie, "cortical bone trajectory") than the traditionally used path.Study DesignHuman cadaveric biomechanical study.MethodsEach vertebral level (L1-L5) was dual-energy X-ray absorptiometry (DXA) scanned and had two pedicle screws inserted. On one side, the traditional medially directed trajectory was drilled and tapped. On the contralateral side, the newly proposed cortical bone trajectory was drilled and tapped. After qCT scanning, screws were inserted into their respective trajectories and pullout and toggle testing ensued. In uniaxial pullout, the pedicle screw was withdrawn vertically from the constrained bone until failure occurred. The contralateral side was tested in the same manner. In screw toggle testing, the vertebral body was rigidly constrained and a longitudinal rod was attached to each screw head. The rod was grasped using a hydraulic grip and a quasi-static, upward displacement was implemented until construct failure. The contralateral pedicle screw was tested in the same manner. Yield pullout (N) and stiffness (N/mm) as well as failure moment (N-m) were compared and bone mineral content and bone density data were correlated with the yield pullout force.ResultsNew cortical trajectory screws demonstrated a 30% increase in uniaxial yield pullout load relative to the traditional pedicle screws (p=0.080), although mixed loading demonstrated equivalency between the two trajectories. No significant difference in construct stiffness was noted between the two screw trajectories in either biomechanical test or were differences in failure moments (p=0.354). Pedicle screw fixation did not appear to depend on bone quality (DXA) yet positive correlations were demonstrated between trajectory and bone density scans (qCT) and pullout force for both pedicle screws.ConclusionsThe current study demonstrated that the new cortical trajectory and screw design have equivalent pullout and toggle characteristics compared with the traditional trajectory pedicle screw, thus confirming preliminary clinical evidence. The 30% increase in failure load of the cortical trajectory screw in uniaxial pullout and its juxtaposition to higher quality bone justify its use in patients with poor trabecular bone quality.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…