• Stroke · Dec 1993

    Effect of cerebral blood flow generated during cardiopulmonary resuscitation in dogs on maintenance versus recovery of ATP and pH.

    • S M Eleff, H Kim, D H Shaffner, R J Traystman, and R C Koehler.
    • Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Md.
    • Stroke. 1993 Dec 1;24(12):2066-73.

    Background And PurposeCardiopulmonary resuscitation with external chest compression generates low perfusion pressures that may be inadequate for restoring cerebral metabolism and may worsen intracellular pH. We tested the hypothesis that cerebral reperfusion with a low perfusion pressure after arrest restores brain adenosine triphosphate (ATP) and pH to levels attained at the same perfusion pressure without preceding complete ischemia.MethodsBrain ATP and intracellular pH were measured by magnetic resonance spectroscopy, and cerebral blood flow was measured with microspheres in anesthetized dogs. External chest compressions were begun in group A (n = 6) immediately after the onset of arrest (ie, arrest time zero) and in group B (n = 10) after 6 minutes of arrest (ie, arrest time 6 minutes). In both groups, mean cerebral perfusion pressure was regulated at 30 mm Hg for 70 minutes by adjustment of inflation pressure of a pneumatic thoracic vest.ResultsAt 12 minutes of resuscitation, cerebral blood flow was 27 +/- 4 mL/min per 100 g in group A and 21 +/- 4 mL/min per 100 g in group B, but ATP in group B (58 +/- 10% of prearrest) was less than in group A (105 +/- 6%). With prolonged resuscitation, ATP deteriorated to near zero levels in dogs in group B, with blood flow less than 15 mL/min per 100 g. Dogs with greater blood flow never achieved complete metabolic recovery. In group B, intracellular pH was unchanged from the 6.3 value at the start of resuscitation, even in those dogs with extremely low blood flows.ConclusionsLevels of cerebral perfusion pressure sufficient to maintain cerebral oxidative metabolism without complete ischemia during cardiopulmonary resuscitation are not sufficient to restore metabolism after complete ischemia during cardiopulmonary resuscitation. However, low "trickle" blood flow did not worsen intracellular acidosis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.