• J. Surg. Res. · Feb 2016

    Brain tissue oxygen evaluation by wireless near-infrared spectroscopy.

    • Che-Chuan Wang, Jinn-Rung Kuo, Yu-Chih Chen, Chung-Ching Chio, Jhi-Joung Wang, and Bor-Shyh Lin.
    • Institute of Photonic System, National Chiao-Tung University, Tainan, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan; Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Child Care, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
    • J. Surg. Res. 2016 Feb 1; 200 (2): 669-75.

    BackgroundMonitoring the partial pressure of oxygen in brain tissue (PbtO2) is an important tool for traumatic brain injury (TBI) but is invasive and inconvenient for real time monitoring. Near-infrared spectroscopy (NIRS), which can monitor hemoglobin parameters in the brain tissue, has been used widely as a noninvasive tool for assessing cerebral ischemia and hypoxia. Therefore, it may have the potential as a noninvasive tool for estimating the change of PbtO2. In this study, a novel wireless NIRS system was designed to monitor hemoglobin parameters of rat brains under different impact strengths and was used to estimate the change of PbtO2 noninvasively in TBI.Materials And MethodsThe proposed wireless NIRS system and a PbtO2 monitoring system were used to monitor the oxygenation of rat brains under different impact strengths. Rats were randomly assigned to four different impact strength groups (sham, 1.6 atm, 2.0 atm, and 2.4 atm; n = 6 per group), and the relationships of concentration changes in oxyhemoglobin (HbO2), deoxyhemoglobin (HbR), and total hemoglobin (HbT), and PbtO2 during and after TBI with different impact strengths were investigated. Triphenyltetrazolium chloride (TTC) staining was also used to evaluate infarction volume.ResultsConcentration changes in HbO2, HbR, and HbT dropped immediately after the impact, increased gradually, and then became stable. Changes in PbtO2 had a similar tendency with the hemoglobin parameters. There was significant correlation between changes in PbtO2 and HbO2 (correlation = 0.76) but not with changes in HbR (correlation = 0.06). In triphenyltetrazolium chloride staining, the infarction volume was highly but negatively associated with oxygen-related parameters like PbtO2 and HbO2.ConclusionsChanges in HbO2 under TBI was highly and positively correlated with changes in PbtO2. By using the relative changes in HbO2 as a reference parameter, the proposed wireless NIRS system may be developed as a noninvasive tool for estimating the change of PbtO2 in brain tissue after TBI.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…