-
Critical care medicine · Mar 2014
Observational StudySerum Biomarkers of Brain Injury to Classify Outcome After Pediatric Cardiac Arrest.
- Ericka L Fink, Rachel P Berger, Robert S B Clark, Robert S Watson, Derek C Angus, Rudolph Richichi, Ashok Panigrahy, Clifton W Callaway, Michael J Bell, and Patrick M Kochanek.
- 1Department of Critical Care Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 2Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 3Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA. 4Statistical Analysis and Measurement Consultants, Inc., Lanexa, VA. 5Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 6Department of Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA.
- Crit. Care Med. 2014 Mar 1; 42 (3): 664674664-74.
ObjectivesMorbidity and mortality in children with cardiac arrest largely result from neurologic injury. Serum biomarkers of brain injury can potentially measure injury to neurons (neuron-specific enolase), astrocytes (S100b), and axons (myelin basic protein). We hypothesized that serum biomarkers can be used to classify outcome from pediatric cardiac arrest.DesignProspective observational study.SettingSingle tertiary pediatric hospital.PatientsForty-three children with cardiac arrest.InterventionsNone.Measurements And Main ResultsWe measured serum neuron-specific enolase, S100b, and myelin basic protein on days 1-4 and 7 after cardiac arrest. We recorded demographics, details of the cardiac arrest and resuscitation, and Pediatric Cerebral Performance Category at hospital discharge and 6 months. We analyzed the association of biomarker levels at 24, 48, and 72 hours with favorable (Pediatric Cerebral Performance Category 1-3) or unfavorable (Pediatric Cerebral Performance Category 4-6) outcome and mortality. Forty-three children (49% female; mean age of 5.9 ± 6.3) were enrolled and 17 (40%) died. Serum S100b concentrations peaked earliest, followed by neuron-specific enolase and finally myelin basic protein. Serum neuron-specific enolase and S100b concentrations were increased in the unfavorable versus favorable outcome group and in subjects who died at all time points (all p < 0.05). Serum myelin basic protein at 24 and 72 hours correctly classified survival but not good versus poor outcome. Using best specificity, serum S100b and neuron-specific enolase had optimal positive and negative predictive values at 24 hours to classify both favorable versus unfavorable outcome and survival, whereas serum myelin basic protein's best accuracy occurred at 48 hours. Receiver operator curves for serum S100b and neuron-specific enolase to classify favorable versus unfavorable outcome at 6 months were superior to clinical variables.ConclusionsPreliminary data show that serum S100b, neuron-specific enolase, and myelin basic protein may aid in outcome classification of children surviving cardiac arrest.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.