-
- Qi Yuan, Weidong Zhou, Shufang Li, and Dongmei Cai.
- School of Information Science and Engineering, Shandong University, Jinan 250100, China. qiyuan@mail.sdu.edu.cn
- Epilepsy Res. 2011 Sep 1;96(1-2):29-38.
AbstractThe automatic detection and classification of epileptic EEG are significant in the evaluation of patients with epilepsy. This paper presents a new EEG classification approach based on the extreme learning machine (ELM) and nonlinear dynamical features. The theory of nonlinear dynamics has been a powerful tool for understanding brain electrical activities. Nonlinear features extracted from EEG signals such as approximate entropy (ApEn), Hurst exponent and scaling exponent obtained with detrended fluctuation analysis (DFA) are employed to characterize interictal and ictal EEGs. The statistics indicate that the differences of those nonlinear features between interictal and ictal EEGs are statistically significant. The ELM algorithm is employed to train a single hidden layer feedforward neural network (SLFN) with EEG nonlinear features. The experiments demonstrate that compared with the backpropagation (BP) algorithm and support vector machine (SVM), the performance of the ELM is better in terms of training time and classification accuracy which achieves a satisfying recognition accuracy of 96.5% for interictal and ictal EEG signals.Copyright © 2011 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.