• J. Cardiothorac. Vasc. Anesth. · Feb 2007

    Clinical Trial

    Temperature-related differences in mean expired pump and arterial carbon dioxide in patients undergoing cardiopulmonary bypass.

    • Yong G Peng, Timothy E Morey, Dale Clark, Matthew D Forthofer, Nikolaus Gravenstein, and Gregory M Janelle.
    • Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610, USA. ypeng@anest.ufl.edu
    • J. Cardiothorac. Vasc. Anesth. 2007 Feb 1;21(1):57-60.

    ObjectiveTo investigate the relationship between arterial carbon dioxide (PaCO(2)) and mean expired pump CO(2) during cardiopulmonary bypass (PeCPBCO(2)) in patients undergoing cardiac surgery with CPB during steady state, cooling, and rewarming phases of CPB.DesignConsenting patients, prospective study.SettingUniversity-affiliated hospital.ParticipantsTwenty-nine patients.InterventionsPatients aged 22 to 81 years were enrolled. An alpha-stat acid-base regimen was performed during CPB. The PeCPBCO(2) was measured by an infrared multigas analyzer with the sampling line connected to the scavenging port of the oxygenator. Values for PaCPBCO(2) from the arterial outflow to the patient and PeCPBCO(2) during CPB at various oxygenator arterial temperatures were collected and compared. Data were analyzed by analysis of variance with 1-way repeated measures and post hoc pair-wise Tukey testing when appropriate. The differences between PaCPBCO(2) and PeCPBCO(2) were linearly regressed against temperature. A p value <0.05 was considered significant.Measurements And Main ResultsThree to 5 data sets during CPB were collected from each patient. The mean gradient between PaCPBCO(2) and PeCPBCO(2) was positive 12.4 +/- 10.0 mmHg during the cooling phase and negative 9.3 +/- 9.9 mmHg during the rewarming phase, respectively. On regression of the data, the difference between PaCPBCO(2) and PeCPBCO(2) shows a good correlation with the change in temperature (r(2) = 0.79). The arterial CO(2) +/- x mmHg can be predicted by the formula PaCPBCO(2) = (-2.17x + 69.2) + PeCPBCO(2), where x is temperature in degrees C.ConclusionsMonitoring the mean expired CO(2) value from the CPB oxygenator exhaust scavenging port with a capnography monitor provides a continuous and noninvasive data source to aid in sweep flow CPB circuit management during CPB.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.