-
- Konrad Schöttner, Valérie Simonneaux, Patrick Vuillez, Stephan Steinlechner, Paul Pévet, and Dietmar Weinert.
- Institute of Biology/Zoology, Martin-Luther-University Halle, Halle, Germany.
- Chronobiol. Int. 2011 Dec 1;28(10):873-82.
AbstractDjungarian hamsters (Phodopus sungorus) bred at the Institute of Halle reveal three different circadian phenotypes. The wild type (WT) shows normal locomotor activity patterns, whereas in hamsters of the DAO (delayed activity onset) type, the activity onset is continuously delayed. Since the activity offset in those hamsters remains coupled to "light-on," the activity time becomes compressed. Hamsters of the AR (arrhythmic) type are episodically active throughout the 24 h. Previous studies showed that a disturbed interaction of the circadian system with the light-dark (LD) cycle contributes to the phenomenon observed in DAO hamsters. To gain better insight into the underlying mechanisms, the authors investigated the daily melatonin rhythm, as it is a reliable marker of the circadian clock. Hamsters were kept individually under standardized laboratory conditions (LD 14:10, T=22°C±2°C, food and water ad libitum). WT, DAO (with exactly 5 h delay of activity onset), and AR hamsters were used for pineal melatonin and urinary 6-sulfatoxymelatonin (aMT6s) measurement. Pineal melatonin content was determined at 3 time points: 4 h after "light-off" [D+4], 1 h before "light-on" [L-1], and 1h after "light-on" [L+1]). The 24-h profile of melatonin secretion was investigated by transferring the animals to metabolic cages for 27?h to collect urine at 3-h intervals for aMT6s analysis. WT hamsters showed high pineal melatonin content during the dark time (D+4, L-1), which significantly decreased at the beginning of the light period (L+1). In contrast, DAO hamsters displayed low melatonin levels during the part of the dark period when animals were still resting (D+4). At the end of the dark period (L-1), melatonin content increased significantly and declined again when light was switched on (L+1). AR hamsters showed low melatonin levels, comparable to daytime values, at all 3 time points. The results were confirmed by aMT6s data. WT hamsters showed a marked circadian pattern of aMT6s excretion. The concentration started to increase 3?h after "light-off" and reached daytime values 5 h after "light-on." In DAO hamsters, in contrast, aMT6s excretion started about 6?h later and reached significantly lower levels compared to WT hamsters. In AR animals, aMT6s excretion was low at all times. The results clearly indicate the rhythm of melatonin secretion in DAO hamsters is delayed in accord with their delayed activity onset, whereas AR hamsters display no melatonin rhythm at all. Since the regulatory pathways for the rhythms of locomotor activity and melatonin synthesis (which are downstream from the suprachiasmatic nucleus [SCN]) are different but obviously convey the same signal, we conclude that the origin of the phenomenon observed in DAO hamsters must be located upstream of the SCN, or in the SCN itself.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.