• Bmc Med Res Methodol · Oct 2015

    Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation.

    • Rezvan Panteha Hayati PH Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Melbourne, V, Ian R White, Katherine J Lee, John B Carlin, and Julie A Simpson.
    • Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Melbourne, VIC, Australia. phayati@student.unimelb.edu.au.
    • Bmc Med Res Methodol. 2015 Oct 13; 15: 83.

    BackgroundMultiple imputation (MI) is a well-recognised statistical technique for handling missing data. As usually implemented in standard statistical software, MI assumes that data are 'Missing at random' (MAR); an assumption that in many settings is implausible. It is not possible to distinguish whether data are MAR or 'Missing not at random' (MNAR) using the observed data, so it is desirable to discover the impact of departures from the MAR assumption on the MI results by conducting sensitivity analyses. A weighting approach based on a selection model has been proposed for performing MNAR analyses to assess the robustness of results obtained under standard MI to departures from MAR.MethodsIn this article, we use simulation to evaluate the weighting approach as a method for exploring possible departures from MAR, with missingness in a single variable, where the parameters of interest are the marginal mean (and probability) of a partially observed outcome variable and a measure of association between the outcome and a fully observed exposure. The simulation studies compare the weighting-based MNAR estimates for various numbers of imputations in small and large samples, for moderate to large magnitudes of departure from MAR, where the degree of departure from MAR was assumed known. Further, we evaluated a proposed graphical method, which uses the dataset with missing data, for obtaining a plausible range of values for the parameter that quantifies the magnitude of departure from MAR.ResultsOur simulation studies confirm that the weighting approach outperformed the MAR approach, but it still suffered from bias. In particular, our findings demonstrate that the weighting approach provides biased parameter estimates, even when a large number of imputations is performed. In the examples presented, the graphical approach for selecting a range of values for the possible departures from MAR did not capture the true parameter value of departure used in generating the data.ConclusionsOverall, the weighting approach is not recommended for sensitivity analyses following MI, and further research is required to develop more appropriate methods to perform such sensitivity analyses.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…