-
Blood Coagul. Fibrinolysis · Dec 2011
Redox-based thrombelastographic method to detect carboxyhemefibrinogen-mediated hypercoagulability.
- Vance G Nielsen, Matthew R Arkebauer, and Keith Vosseller.
- Department of Anesthesiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA. vance.nielsen@drexelmed.edu
- Blood Coagul. Fibrinolysis. 2011 Dec 1;22(8):657-61.
AbstractCigarette smoking is associated with plasmatic hypercoagulability, and carbon monoxide has been demonstrated to enhance coagulation by binding to a fibrinogen-bound heme. Our objective was to design and test a redox-based method to detect carboxyhemefibrinogen. Normal, pooled, citrated plasma was exposed to 0-100 μmol/l carbon monoxide releasing molecule-2 (tricarbonyldichlororuthenium (II) dimer; CORM-2) before or after exposure to the organic reductant phenylhydroxylamine (PHA, 0-30 mmol/l), a compound that rapidly converts Fe(+2) to Fe(+3) in heme. Addition of calcium and tissue factor activation in disposable thrombelastographic cups was performed, followed by data collection at 37°C for 15 min. Elastic modulus (G, dynes/cm(2)) was the primary endpoint. CORM-2 significantly increased G values by 67.8% compared to unexposed plasma; pretreatment with 10 mmol/l PHA significantly decreased G values in CORM-2-exposed plasma by 77.1%, whereas 30 mmol/l PHA was required to significantly decrease G values by 64.0% in plasma following CORM-2 pre-exposure. G values were not significantly different between unexposed plasma and plasma exposed to CORM-2 followed by 30 mmol/l PHA addition. Conversion of fibrinogen-bound to the metheme state alone decreased G by 34.3-38.9% following exposure to 10-30 mmol/l PHA. Conversion of fibrinogen-bound heme Fe(+2) to Fe(+3) with PHA abrogated carbon monoxide-mediated increases in clot strength. Clinical trials are planned to investigate smoking individuals to mechanistically link carboxyhemefibrinogen formation with in-vitro hypercoagulability.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.