• J Card Surg · Jan 2004

    Is maintenance of cerebral hypothermia the principal mechanism by which retrograde cerebral perfusion provides better brain protection than hypothermic circulatory arrest? A study in a porcine model.

    • Zhijun Li, Luojia Yang, Randy Summers, Michael Jackson, Roxanne Deslauriers, and Jian Ye.
    • Department of Surgery, University of Manitoba.
    • J Card Surg. 2004 Jan 1;19(1):28-35.

    ObjectiveRetrograde cerebral perfusion (RCP) provides better brain protection than hypothermic circulatory arrest (HCA) alone. The mechanism by which RCP improves brain protection during circulatory arrest remains unknown. The purpose of the study in pigs was to determine if RCP improves brain protection mainly as a result of its ability to maintain cerebral hypothermia.MethodsFifteen pigs were subjected to 120 minutes of HCA alone (HCA group, n = 5), HCA + RCP at perfusion pressures of 23 to 29 mmHg (RCP-low group, n = 5), or at perfusion pressures of 34-40 mmHg (RCP-high group, n = 5) at 15 degrees C, followed by 60 minutes of normothermic cardiopulmonary bypass (CPB). After brain temperature reached 15 degrees C, HCA was initiated with or without RCP. Temperatures in the brain, esophagus, and perfusate/blood were monitored continuously. Brain tissue blood flow was measured continuously using a laser flowmeter. Brain oxygen extraction was calculated from the oxygen contents in arterial and venous blood samples.ResultsDuring cooling and rewarming, the change in temperature was slower in the brain than in the esophagus. A similar degree of spontaneous rewarming (from 15 degrees C to 17/18 degrees C) occurred in the brain during HCA and RCP. This indicates that RCP does not provide better maintenance of cerebral hypothermia during circulatory arrest than HCA alone. The esophageal temperature rose more slowly during RCP than during HCA alone, indicating that RCP maintains better hypothermia in the body. During RCP, the brain extracted oxygen continuously from the blood, indicating that RCP may provide nutrient flow to the brain.ConclusionIn an acute pig model, maintenance of cerebral hypothermia does not appear to be the principal mechanism by which RCP provides better brain protection than HCA alone. Retrograde cerebral perfusion provides nutrient flow/oxygen to brain tissue, leading to better brain protection than HCA alone.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.