• Journal of biomechanics · Oct 2014

    Deviation from optimal vascular caliber control at middle cerebral artery bifurcations harboring aneurysms.

    • Merih I Baharoglu, Alexandra Lauric, Chengyuan Wu, James Hippelheuser, and Adel M Malek.
    • Cerebrovascular and Endovascular Division, Department of Neurosurgery, Tufts Medical Center and Tufts University School of Medicine, Boston, MA 02111, USA.
    • J Biomech. 2014 Oct 17;47(13):3318-24.

    AbstractCerebral aneurysms form preferentially at arterial bifurcations. The vascular optimality principle (VOP) decrees that minimal energy loss across bifurcations requires optimal caliber control between radii of parent (r₀) and daughter branches (r1 and r2): r₀(n)=r₁(n)+r₂(n), with n approximating three. VOP entails constant wall shear stress (WSS), an endothelial phenotype regulator. We sought to determine if caliber control is maintained in aneurysmal intracranial bifurcations. Three-dimensional rotational angiographic volumes of 159 middle cerebral artery (MCA) bifurcations (62 aneurysmal) were processed using 3D gradient edge-detection filtering, enabling threshold-insensitive radius measurement. Radius ratio (RR)=r₀(3)/(r₁(3)+r₂(3)) and estimated junction exponent (n) were compared between aneurysmal and non-aneurysmal bifurcations using Student t-test and Wilcoxon rank-sum analysis. The results show that non-aneurysmal bifurcations display optimal caliber control with mean RR of 1.05 and median n of 2.84. In contrast, aneurysmal bifurcations had significantly lower RR (0.76, p<.0001) and higher n (4.28, p<.0001). Unexpectedly, 37% of aneurysmal bifurcations revealed a daughter branch larger than its parent vessel, an absolute violation of optimality, not witnessed in non-aneurysmal bifurcations. The aneurysms originated more often off the smaller daughter (52%) vs. larger daughter branch (16%). Aneurysm size was not statistically correlated to RR or n. Aneurysmal males showed higher deviation from VOP. Non-aneurysmal MCA bifurcations contralateral to aneurysmal ones showed optimal caliber control. Aneurysmal bifurcations, in contrast to non-aneurysmal counterparts, disobey the VOP and may exhibit dysregulation in WSS-mediated caliber control. The mechanism of this focal divergence from optimality may underlie aneurysm pathogenesis and requires further study.Copyright © 2014 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.