• J. Neurosci. · Dec 2000

    Clinical Trial

    Neuroplastic changes related to pain occur at multiple levels of the human somatosensory system: A somatosensory-evoked potentials study in patients with cervical radicular pain.

    • M Tinazzi, A Fiaschi, T Rosso, F Faccioli, J Grosslercher, and S M Aglioti.
    • Dipartimenti di Scienze Neurologiche e della Visione, Sezione di Neurologia Riabilitativa and Sezione di Neurochirurgia, Università di Verona, 37134 Verona, Italy, and Dipartimento di Psicologia, Università di Roma "La Sapienza," and Istitut.
    • J. Neurosci. 2000 Dec 15;20(24):9277-83.

    AbstractStudies suggest that pain may play a major role in determining cortical rearrangements in the adult human somatosensory system. Most studies, however, have been performed under conditions whereby pain coexists with massive deafferentation (e.g., amputations). Moreover, no information is available on whether spinal and brainstem changes contribute to pain-related reorganizational processes in humans. Here we assess the relationships between pain and plasticity by recording somatosensory-evoked potentials (SEPs) in patients who complained of pain to the right thumb after a right cervical monoradiculopathy caused by compression of the sixth cervical root, but did not present with clinical or neurophysiological signs of deafferentation. Subcortical and cortical potentials evoked by stimulation of digital nerves of the right thumb and middle finger were compared with those obtained after stimulation of the left thumb and middle finger and with those obtained in a control group tested in comparable conditions. Amplitudes of spinal N13, brainstem P14, parietal N20 and P27, and frontal N30 potentials after stimulation of the painful right thumb were greater than those of the nonpainful left thumb and showed a positive correlation with magnitude of pain. This right-left asymmetry was absent after stimulation of the patients' middle fingers and in control subjects. Results suggest that chronic cervical radicular pain is associated with changes in neural activity at multiple levels of the somatosensory system. The absence of correlation between the amplitude of spinal, brainstem, and cortical components of SEPs suggests that enhancement of cortical activity is not a simple amplification of subcortical enhancement.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…