-
- Weiguo Song and Mulugeta Semework.
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, NY 11203, USA. Electronic address: weiguo.song@yahoo.com.
- Brain Res. 2015 Nov 2; 1625: 301-13.
AbstractTo further understand how tactile information is carried in somatosensory cortex (S1) and the thalamus (VPL), and how neuronal plasticity after neuroprosthetic stimulation affects sensory encoding, we chronically implanted microelectrode arrays across hand areas in both S1 and VPL, where neuronal activities were simultaneously recorded during tactile stimulation on the finger pad of awake monkeys. Tactile information encoded in the firing rate of individual units (rate coding) or in the synchrony of unit pairs (synchrony coding) was quantitatively assessed within the information theoretic-framework. We found that tactile information encoded in VPL was higher than that encoded in S1 for both rate coding and synchrony coding; rate coding carried greater information than synchrony coding for the same recording area. With the aim for neuroprosthetic stimulation, plasticity of the circuit was tested after 30 min of VPL electrical stimulation, where stimuli were delivered either randomly or contingent on the spiking of an S1 unit. We showed that neural encoding in VPL was more stable than in S1, which depends not only on the thalamic input but also on recurrent feedback. The percent change of mutual-information after stimulation was increased with closed-loop stimulation, but decreased with random stimulation. The underlying mechanisms during closed-loop stimulation might be spike-timing-dependent plasticity, while frequency-dependent synaptic plasticity might play a role in random stimulation. Our results suggest that VPL could be a promising target region for somatosensory stimulation with closed-loop brain-machine-interface applications.Copyright © 2015 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.