• Neurobiology of disease · Feb 2011

    BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse.

    • Verna Louhivuori, Annalisa Vicario, Marko Uutela, Tomi Rantamäki, Lauri M Louhivuori, Eero Castrén, Enrico Tongiorgi, Karl E Akerman, and Maija L Castrén.
    • Department of Biomedicine/Physiology, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland.
    • Neurobiol. Dis. 2011 Feb 1;41(2):469-80.

    AbstractFragile X syndrome (FXS) is a common cause of inherited mental retardation and the best characterized form of autistic spectrum disorders. FXS is caused by the loss of functional fragile X mental retardation protein (FMRP), which leads to abnormalities in the differentiation of neural progenitor cells (NPCs) and in the development of dendritic spines and neuronal circuits. Brain-derived neurotrophic factor (BDNF) and its TrkB receptors play a central role in neuronal maturation and plasticity. We studied BDNF/TrkB actions in the absence of FMRP and show that an increase in catalytic TrkB expression in undifferentiated NPCs of Fmr1-knockout (KO) mice, a mouse model for FXS, is associated with changes in the differentiation and migration of neurons expressing TrkB in neurosphere cultures and in the developing cortex. Aberrant intracellular calcium responses to BDNF and ATP in subpopulations of differentiating NPCs combined with changes in the expression of BDNF and TrkB suggest cell subtype-specific alterations during early neuronal maturation in the absence of FMRP. Furthermore, we show that dendritic targeting of Bdnf mRNA was increased under basal conditions and further enhanced in cortical layer V and hippocampal CA1 neurons of Fmr1-KO mice by pilocarpine-induced neuronal activity represented by convulsive seizures, suggesting that BDNF/TrkB-mediated feedback mechanisms for strengthening the synapses were compromised in the absence of FMRP. Pilocarpine-induced seizures caused an accumulation of Bdnf mRNA transcripts in the most proximal segments of dendrites in cortical but not in hippocampal neurons of Fmr1-KO mice. In addition, BDNF protein levels were increased in the hippocampus but reduced in the cortex of Fmr1-KO mice in line with regional differences of synaptic plasticity in the brain of Fmr1-KO mice. Altogether, the present data suggest that alterations in the BDNF/TrkB signaling modulate brain development and impair synaptic plasticity in FXS.Copyright © 2010 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.