• Prehosp Disaster Med · Oct 2011

    Performance of portable ventilators for mass-casualty care.

    • Thomas C Blakeman, Dario Rodriquez, Warren C Dorlac, Dennis J Hanseman, Ellie Hattery, and Richard D Branson.
    • University of Cincinnati, Department of Surgery, Cincinnati, OH, USA. thomas.blakeman@hotmail.com
    • Prehosp Disaster Med. 2011 Oct 1;26(5):330-4.

    IntroductionDisasters and mass-casualty scenarios may overwhelm medical resources regardless of the level of preparation. Disaster response requires medical equipment, such as ventilators, that can be operated under adverse circumstances and should be able to provide respiratory support for a variety of patient populations.ObjectiveThe objective of this study was to evaluate the performance of three portable ventilators designed to provide ventilatory support outside the hospital setting and in mass-casualty incidents, and their adherence to the Task Force for Mass Critical Care recommendations for mass-casualty care ventilators.MethodsEach device was evaluated at minimum and maximum respiratory rate and tidal volume settings to determine the accuracy of set versus delivered VT at lung compliance settings of 0.02, 0.08 and 0.1 L/cm H20 with corresponding resistance settings of 10, 25, and 5 cm H2O/L/sec, to simulate patients with ARDS, severe asthma, and normal lungs. Additionally, different FIO2 settings with each device (if applicable) were evaluated to determine accuracy of FIO2 delivery and evaluate the effect on delivered VT. Ventilators also were tested for duration of battery life.ResultsVT decreased with all three devices as compliance decreased. The decrease was more pronounced when the internal compressor was activated. At the 0.65 FIO2 setting on the MCV 200, the measured FIO2 varied widely depending on the set VT. Battery life range was 311-582 minutes with the 73X having the longest battery life. Delivered VT decreased toward the end of battery life with the SAVe having the largest decrease. The respiratory rate on the SAVe also decreased approaching the end of battery life.ConclusionThe 73X and MCV 200 were the closest to satisfying the Task Force for Mass Critical Care requirements for mass casualty ventilators, although neither had the capability to provide PEEP. The 73X provided the most consistent tidal volume delivery across all compliances, had the longest battery duration and the least decline in VT at the end of battery life.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.