• Plos One · Jan 2014

    Clinical Trial

    A risk prediction model for screening bacteremic patients: a cross sectional study.

    • Franz Ratzinger, Michel Dedeyan, Matthias Rammerstorfer, Thomas Perkmann, Heinz Burgmann, Athanasios Makristathis, Georg Dorffner, Felix Lötsch, Alexander Blacky, and Michael Ramharter.
    • Department of Laboratory Medicine, Division of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, Vienna, Austria.
    • Plos One. 2014 Jan 1;9(9):e106765.

    BackgroundBacteraemia is a frequent and severe condition with a high mortality rate. Despite profound knowledge about the pre-test probability of bacteraemia, blood culture analysis often results in low rates of pathogen detection and therefore increasing diagnostic costs. To improve the cost-effectiveness of blood culture sampling, we computed a risk prediction model based on highly standardizable variables, with the ultimate goal to identify via an automated decision support tool patients with very low risk for bacteraemia.MethodsIn this retrospective hospital-wide cohort study evaluating 15,985 patients with suspected bacteraemia, 51 variables were assessed for their diagnostic potency. A derivation cohort (n = 14.699) was used for feature and model selection as well as for cut-off specification. Models were established using the A2DE classifier, a supervised Bayesian classifier. Two internally validated models were further evaluated by a validation cohort (n = 1,286).ResultsThe proportion of neutrophile leukocytes in differential blood count was the best individual variable to predict bacteraemia (ROC-AUC: 0.694). Applying the A2DE classifier, two models, model 1 (20 variables) and model 2 (10 variables) were established with an area under the receiver operating characteristic curve (ROC-AUC) of 0.767 and 0.759, respectively. In the validation cohort, ROC-AUCs of 0.800 and 0.786 were achieved. Using predefined cut-off points, 16% and 12% of patients were allocated to the low risk group with a negative predictive value of more than 98.8%.ConclusionApplying the proposed models, more than ten percent of patients with suspected blood stream infection were identified having minimal risk for bacteraemia. Based on these data the application of this model as an automated decision support tool for physicians is conceivable leading to a potential increase in the cost-effectiveness of blood culture sampling. External prospective validation of the model's generalizability is needed for further appreciation of the usefulness of this tool.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…