• Critical care medicine · Jan 1993

    Effects of dense, high-volume, artificial surfactant aerosol on a heated exhalation filter system.

    • C F Haas, J G Weg, C W Kettell, E J Caldwell, D S Zaccardelli, and D L Brown.
    • Division of Pulmonary and Critical Care Medicine, University of Michigan Medical Center, Ann Arbor 48109-0024.
    • Crit. Care Med. 1993 Jan 1;21(1):125-30.

    ObjectiveTo evaluate a supplemental heated filter system during mechanical ventilation with continuous nebulization of an artificial surfactant by a new, high-volume nebulizer.Design And MethodsA new nebulizer system, containing artificial surfactant, provided half of a 20-L minute ventilation and the remainder of this minute ventilation was provided by a commonly used mechanical ventilator. Ventilation sources were joined in the inspiratory limb of the breathing circuit, which was connected to a test lung system. A supplemental filter system was placed upstream of the ventilator's heated filter in the expiratory limb of the circuit. Circuit pressures at the inlet of the supplemental filter (P1), between the filters (P2), and after the ventilator expiratory filter (P3) were monitored and recorded. Nebulizer canisters containing artificial surfactant were replaced every 4 hrs. The performance of four supplemental filters in continuous use was examined. Another four filters were each used over 4 hrs, steam autoclaved, and reused.SettingsThe ventilator was set at a rate of 20 breaths/min, with a tidal volume of 0.5 L, a flow rate of 40 L/min, and positive end-expiratory pressure of 10 cm H2O. The nebulizer provided an equal volume and flow rate so that the delivered tidal volume was 1.0 L with a flow rate of 80 L/min.ResultsVentilator failure and/or excessive airway pressure caused by increased filter resistance occurred at a mean of 7.3 +/- 1.3 (SD) hrs of continuous ventilation. Mean P1-peak increased from 67.5 +/- 8.2 to 94.0 +/- 10.7 cm H2O (p < .001) and P1-baseline increased from 9.3 +/- 1.0 to 53.5 +/- 17.1 cm H2O (p = .014). Filters that were autoclaved after 4 hrs of ventilation and reused lasted a total of 7.0 +/- 1.3 hrs. Mean P1-peak increased from 68.9 +/- 4.9 to 84.8 +/- 19.1 cm H2O and P1-baseline increased from 9.5 +/- 1.7 to 30.8 +/- 14.2 cm H2O (p < .05).ConclusionsThe supplemental filter system was able to protect the ventilatory exhalation sensors for approximately 7 hrs at a minute ventilation of 20 L/min. Steam sterilization did not extend the supplemental filter life.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.