-
IEEE Trans Biomed Eng · Sep 2010
Automatic detection of lumbar anatomy in ultrasound images of human subjects.
- Denis Tran and Robert N Rohling.
- University of British Columbia, Vancouver, BC V6T1Z4, Canada. denist@ece.ubc.ca
- IEEE Trans Biomed Eng. 2010 Sep 1;57(9):2248-56.
AbstractUltrasound has been proposed for aiding epidural needle insertion, but challenges remain in differentiating spinal structures due to noise, artifacts, and inexperience by anesthesiologists in ultrasound interpretation. Moreover, the anesthesiologist needs to measure relevant distances while preserving sterile conditions; therefore, interaction with the ultrasound controls must be minimal. Automated measurement is needed. Beam-steered ultrasound images are captured and spatial compounding is used to improve image quality. Phase symmetry is used to enhance bone (lamina) and ligamentum flavum (LF) ridges. A lamina template is matched to this ridge map using Pearson's cross-correlation, and the most likely lamina positions are found. Then, the lamina is traversed using a LF template with the Pearson's cross-correlation, and the location of the LF is obtained. Tests are performed on 39 sets of compounded ultrasound images in the L2-3 and L3-4 levels of the spine in the paramedian plane. The proposed algorithm can detect the laminas in 38 of the 39 images, and the LF in 34 of the 39 images. In successful detections, the automatic detections versus manual segmentation has an rms error of 0.64 mm and average error 0.04 mm, versus independent sonographer-measured depth has a root-mean-squared error of 3.7 mm and average error 2.5 mm, and versus the actual needle insertion depth has a root-mean-squared of 5.1 mm and average error -2.8 mm. The computational time is 4.3 s on a typical personal computer. The accuracy, reliability, and speed suggest this method may be valuable for helping guide epidurals in conjunction with the traditional loss-of-resistance method.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.