• Investigative radiology · Feb 2006

    Comparative Study

    T1-weighted imaging of the brain at 3 tesla using a 2-dimensional spoiled gradient echo technique.

    • Val M Runge, Mittun C Patel, Shannon S Baumann, Alexander B Simonetta, John A Ponzo, Walter S Lesley, Gordon W Calderwood, and L G Naul.
    • Department of Diagnostic Radiology, Scott and White Clinic and Hospital, Temple, TX 76508, USA. runge@att.net
    • Invest Radiol. 2006 Feb 1;41(2):68-75.

    Rationale And ObjectivesThe objective of this study was to evaluate a 2-dimensional spoiled gradient echo (GRE) imaging approach using a very short in-phase TE for routine T1-weighted imaging of the brain at 3 T.Materials And MethodsPatient examinations were compared from a 3 T magnetic resonance (MR) unit located immediately adjacent to a similarly equipped 1.5 T unit. Pre- and postcontrast T1-weighted images were evaluated and compared at 1.5 versus 3 T with a 2-dimensional (2-D) spin echo sequence used at 1.5 T and a 2-D GRE sequence at 3 T. The 2 MR systems used are from the same vendor, use similar 8-channel coils, and use identical gradients. The T1-weighted GRE sequence, used at 3 T, relies on a short TE (2.4 ms) to limit flow-related and susceptibility artifacts. Region-of-interest analysis was performed on 16 different sagittal patient examinations at both field strengths (32 total) and similarly on 10 different pre- and postcontrast axial examinations (40 total). Four blinded neuroradiologists also evaluated these studies.ResultsUsing an off-midline sagittal slice depicting the caudate nucleus (signal-to-noise ratio [SNR] 163 +/- 28 vs. 70 +/- 7, 3 T vs. 1.5 T) and corona radiata (SNR 214 +/- 35 vs. 82 +/- 10), 3 T markedly outperformed 1.5 T in both SNR and contrast-to-noise ratio (CNR) (51 +/- 14 vs. 12 +/- 5). On axial imaging, despite a reduction in slice thickness (5 to 3 mm) and scan time (5 to 1 minute), there was no significant difference pre- or postcontrast in SNR and CNR comparing 3 and 1.5 T. On blinded film review, 3 T performed slightly better on sagittal scans than 1.5 T in regard to motion artifacts (reduced), gray-white matter differentiation, and overall image quality. On axial scans, 3 T performed markedly better in all 3 categories both pre- and postcontrast. In regard to overall image quality, 3 T was preferred 9:2 precontrast and 4:1 postcontrast.ConclusionsHigh-quality, thin-section (3-mm) T1-weighted imaging can be readily performed at 3 T using a short TE 2-D GRE technique. This approach offers superior SNR and CNR with reduced motion artifacts and scan time as compared with imaging at 1.5 T and is advocated for routine brain imaging at 3 T. It is robust (used in over 1500 patients to date) and does not experience significant specific absorption ratio limitations, poor tissue contrast, or accentuated motion artifacts like encountered with spin echo T1-weighted imaging at 3 T.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…