-
Randomized Controlled Trial
Detection of consciousness by electroencephalogram and auditory evoked potentials.
- Gerhard Schneider, Regina Hollweck, Michael Ningler, Gudrun Stockmanns, and Eberhard F Kochs.
- Department of Anesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. gerhard.schneider@lrz.tum.de
- Anesthesiology. 2005 Nov 1;103(5):934-43.
BackgroundA set of electroencephalographic and auditory evoked potential (AEP) parameters should be identified that allows separation of consciousness from unconsciousness (reflected by responsiveness/unresponsiveness to command).MethodsForty unpremedicated patients received anesthesia with remifentanil and either sevoflurane or propofol. With remifentanil infusion (0.2 microg . kg . min), patients were asked every 30 s to squeeze the investigator's hand. Sevoflurane or propofol was given until loss of consciousness. After intubation, propofol or sevoflurane was stopped until patients followed the command (return of consciousness). Thereafter, propofol or sevoflurane was started again (loss of consciousness), and surgery was performed. Return of consciousness was observed after surgery. The electroencephalogram and AEP from immediately before and after the transitions were selected. Logistic regression was calculated to identify models for the separation between consciousness and unconsciousness. For the top 10 models, 1,000-fold cross-validation was performed. Backward variable selection was applied to identify a minimal model. Prediction probability was calculated. The digitized electroencephalogram was replayed, and the Bispectral Index was measured and accordingly analyzed.ResultsThe best full model (prediction probability 0.89) contained 15 AEP and 4 electroencephalographic parameters. The best minimal model (prediction probability 0.87) contained 2 AEP and 2 electroencephalographic parameters (median frequency of the amplitude spectrum from 8-30 Hz and approximate entropy). The prediction probability of the Bispectral Index was 0.737.ConclusionsA combination of electroencephalographic and AEP parameters can be used to differentiate between consciousness and unconsciousness even in a very challenging data set. The minimal model contains a combination of AEP and electroencephalographic parameters and has a higher prediction probability than Bispectral Index for the separation between consciousness and unconsciousness.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.