• Bmc Med Inform Decis · Jan 2008

    Comparative Study

    Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies.

    • T Verplancke, S Van Looy, D Benoit, S Vansteelandt, P Depuydt, F De Turck, and J Decruyenaere.
    • Department of Intensive Care Medicine, Ghent University Hospital, Faculty of Medicine, Ghent University, Ghent, Belgium. thierry.verplancke@ugent.be
    • Bmc Med Inform Decis. 2008 Jan 1;8:56.

    BackgroundSeveral models for mortality prediction have been constructed for critically ill patients with haematological malignancies in recent years. These models have proven to be equally or more accurate in predicting hospital mortality in patients with haematological malignancies than ICU severity of illness scores such as the APACHE II or SAPS II 1. The objective of this study is to compare the accuracy of predicting hospital mortality in patients with haematological malignancies admitted to the ICU between models based on multiple logistic regression (MLR) and support vector machine (SVM) based models.Methods352 patients with haematological malignancies admitted to the ICU between 1997 and 2006 for a life-threatening complication were included. 252 patient records were used for training of the models and 100 were used for validation. In a first model 12 input variables were included for comparison between MLR and SVM. In a second more complex model 17 input variables were used. MLR and SVM analysis were performed independently from each other. Discrimination was evaluated using the area under the receiver operating characteristic (ROC) curves (+/- SE).ResultsThe area under ROC curve for the MLR and SVM in the validation data set were 0.768 (+/- 0.04) vs. 0.802 (+/- 0.04) in the first model (p = 0.19) and 0.781 (+/- 0.05) vs. 0.808 (+/- 0.04) in the second more complex model (p = 0.44). SVM needed only 4 variables to make its prediction in both models, whereas MLR needed 7 and 8 variables in the first and second model respectively.ConclusionThe discriminative power of both the MLR and SVM models was good. No statistically significant differences were found in discriminative power between MLR and SVM for prediction of hospital mortality in critically ill patients with haematological malignancies.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.