• Biological psychiatry · May 2014

    L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice.

    • Luz M Suárez, Oscar Solís, Jose M Caramés, Irene R Taravini, Jose M Solís, Mario G Murer, and Rosario Moratalla.
    • Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid Spain; CIBERNED, Instituto de Salud Carlos III, Madrid Spain.
    • Biol. Psychiatry. 2014 May 1;75(9):711-22.

    BackgroundL-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is an incapacitating complication of L-DOPA therapy that affects most patients with Parkinson's disease. Previous work indicating that molecular sensitization to dopamine receptor D1 (D1R) stimulation is involved in dyskinesias prompted us to perform electrophysiological recordings of striatal projection "medium spiny neurons" (MSN). Moreover, because enhanced D1R signaling in drug abuse induces changes in spine density in striatum, we investigated whether the dyskinesia is related to morphological changes in MSNs.MethodsWild-type and bacterial artificial chromosome transgenic mice (D1R-tomato and D2R-green fluorescent protein) mice were lesioned with 6-hydroxydopamine and subsequently treated with L-DOPA to induce dyskinesia. Functional, molecular, and structural changes were assessed in corticostriatal slices. Individual MSNs injected with Lucifer-Yellow were detected by immunohistochemistry for three-dimensional reconstructions with Neurolucida software. Intracellular current-clamp recordings with high-resistance micropipettes were used to characterize electrophysiological parameters.ResultsBoth D1R-MSNs and D2R-MSNs showed diminished spine density in totally denervated striatal regions in parkinsonian mice. Chronic L-DOPA treatment, which induced dyskinesia and aberrant FosB expression, restored spine density in D2R-MSNs but not in D1R-MSNs. In basal conditions, MSNs are more excitable in parkinsonian than in sham mice, and excitability decreases toward normal values after L-DOPA treatment. Despite this normalization of basal excitability, in dyskinetic mice, the selective D1R agonist SKF38393 increased the number of evoked action potentials in MSNs, compared with sham animals.ConclusionsChronic L-DOPA induces abnormal spine re-growth exclusively in D2R-MSNs and robust supersensitization to D1R-activated excitability in denervated striatal MSNs. These changes might constitute the anatomical and electrophysiological substrates of dyskinesia.Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…