• J Manipulative Physiol Ther · Jan 2002

    Clinical Trial Controlled Clinical Trial

    First Prize: Central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study.

    • J Donald Dishman, Kevin A Ball, and Jeanmarie Burke.
    • Department of Anatomy, New York Chiropractic College, Seneca Falls, NY, USA. ddishman@nycc.edu
    • J Manipulative Physiol Ther. 2002 Jan 1;25(1):1-9.

    BackgroundThe physiologic mechanism by which spinal manipulation may reduce pain and muscular spasm is not fully understood. One such mechanistic theory proposed is that spinal manipulation may intervene in the cycle of pain and spasm by affecting the resting excitability of the motoneuron pool in the spinal cord. Previous data from our laboratory indicate that spinal manipulation leads to attenuation of the excitability of the motor neuron pool when assessed by means of peripheral nerve Ia-afferent stimulation (Hoffmann reflex).ObjectiveThe purpose of this study was to determine the effects of lumbar spinal manipulation on the excitability of the motor neuron pool as assessed by means of transcranial magnetic stimulation.MethodsMotor-evoked potentials were recorded subsequent to transcranial magnetic stimulation. The motor-evoked potential peak-to-peak amplitudes in the right gastrocnemius muscle of healthy volunteers (n = 24) were measured before and after homolateral L5-S1 spinal manipulation (experimental group) or side-posture positioning with no manipulative thrust applied (control group). Immediately after the group-specific procedure, and again at 5 and 10 minutes after the procedure, 10 motor-evoked potential responses were measured at a rate of 0.05 Hz. An optical tracking system (OptoTRAK, Northern Digital Inc, Waterloo, Canada [<0.10 mm root-mean-square]) was used to monitor the 3-dimensional (3-D) position and orientation of the transcranial magnetic stimulation coil, in real time, for each trial.ResultsThe amplitudes of the motor-evoked potentials were significantly facilitated from 20 to 60 seconds relative to the prebaseline value after L5-S1 spinal manipulation, without a concomitant change after the positioning (control) procedure.ConclusionsWhen motor neuron pool excitability is measured directly by central corticospinal activation with transcranial magnetic stimulation techniques, a transient but significant facilitation occurs as a consequence of spinal manipulation. Thus, a basic neurophysiologic response to spinal manipulation is central motor facilitation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.