• Experimental physiology · Aug 2015

    High levels of positive end-expiratory pressure preserve diaphragmatic contractility during acute respiratory distress syndrome in rats.

    • Guang-Yu Jiao, Li-Ying Hao, Lie Chen, Chun-E Gao, Rui Feng, Hui-Yuan Hu, Shu-Tao Tan, Meng-Meng Wang, Bin Zhong, and Ping-Ping Wang.
    • Respiratory Department and Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
    • Exp. Physiol. 2015 Aug 1; 100 (8): 967-76.

    New FindingsWhat is the central question of this study? Higher levels of positive end-expiratory pressure (PEEP) have recently been used in patients with acute respiratory distress syndrome (ARDS). In normal physiological conditions, the ability of the diaphragm to generate pressure is reduced when the lung volume is elevated beyond its functional residual capacity. It is unknown whether higher levels of PEEP will have a negative impact on diaphragmatic contraction in the presence of the pathophysiology of ARDS. What is the main finding and its importance? Mechanical ventilation with higher levels of PEEP reduced lung injury, improved diaphragmatic contractility and increased the expression of both dihydropyridine receptor and ryanodine receptor in the diaphragms of rats with ARDS. Higher levels of positive end-expiratory pressure (PEEP) have recently been used in patients with acute respiratory distress syndrome (ARDS). In normal physiological conditions, the ability of the diaphragm to generate pressure is reduced when the lung volume is elevated beyond its functional residual capacity. Thus, it is critical to understand whether higher levels of PEEP will have a negative impact on diaphragmatic contraction in the presence of the pathophysiology of ARDS. This study was designed to determine whether higher levels of PEEP reduce diaphragmatic contractility in a rat model of ARDS generated using i.p. lipopolysaccharide. Forty rats were randomly assigned to the following five groups: a control group with no special treatment; an ARDS group with no mechanical ventilation; and three ARDS groups with mechanical ventilation with PEEP at 0, 5 or 10 cmH2 O, respectively. We found that mechanical ventilation with PEEP reduced lung injury, improved diaphragmatic contractility and increased the expression of both dihydropyridine receptor and ryanodine receptor in the diaphragms of rats with ARDS. These changes were most significant at a PEEP of 10 cmH2 O among all applied levels of PEEP. In conclusion, using a rat ARDS model, this study confirmed that diaphragmatic contractility was preserved by mechanical ventilation with high levels of PEEP.© 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…