• Eur. J. Pharmacol. · Jan 2015

    Historical Article

    RIPC for multiorgan salvage in clinical settings: evolution of concept, evidences and mechanisms.

    • Puneet Kaur Randhawa, Anjana Bali, and Amteshwar Singh Jaggi.
    • Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
    • Eur. J. Pharmacol. 2015 Jan 5;746:317-32.

    AbstractIschemic preconditioning is an intrinsic process in which preconditioning ischemia (ischemia of shorter duration) protects the organs against the subsequent index ischemia (sustained ischemia). Remote ischemic preconditioning (RIPC) is an innovative treatment approach in which interspersed cycles of preconditioning ischemia followed by reperfusion to a remote organ (other than target organ) protect the target organ against index ischemia and reperfusion-induced injury. RIPC of various organs to provide multi-organ salvage became a successful approach in numerous species of animals. Consequently, the concept of RIPC evolved in clinical setups, and provided beneficial effects in alleviating ischemia-reperfusion-induced injury in various remote organs, including myocardium. Clinically, RIPC stimulus is generally delivered by inflating the blood pressure cuff tied on the upper arm 20 mm greater than the systolic blood pressure, rendering the forearm ischemic for 5 min, followed 5 min reperfusion by deflating the cuff. This cycle is repeated for 3-4 consecutive periods to precondition the tissue and improve the survival. The institution of RIPC is beneficial in mitigating myocardial injury in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention, heart valve surgery, drug-eluting stent implantation, kidney transplantation, elective decompression surgery. The involvement of hypoxia inducible factor-1α (HIF-1α), ATP-sensitive potassium channels, signal transducer and activator of transcription (STAT), matrix metalloproteinases, O-linked β-N-acetylglucosamine (O-GlcNAc) levels, autonomous nervous system in mediating RIPC-induced cardioprotective effects has been explored clinically. However, comprehensive studies are required to elucidate the other possible mechanisms responsible for producing multi-organ protection during RIPC.Copyright © 2014 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.