• Conf Proc IEEE Eng Med Biol Soc · Aug 2015

    Spatio-spectral characterization of local field potentials in the subthalamic nucleus via multitrack microelectrode recordings.

    • I Telkes, N F Ince, I Onaran, and A Abosch.
    • Conf Proc IEEE Eng Med Biol Soc. 2015 Aug 1; 2015: 5561-4.

    AbstractDeep brain stimulation of the subthalamic nucleus (STN) is a highly effective treatment for motor symptoms of Parkinson's disease. However, precise intraoperative localization of STN remains a procedural challenge. In the present study, local field potentials (LFPs) were recorded from three tracks during microelectrode recording-based (MER) targeting of STN, in five patients. The raw LFP data were preprocessed in original recording setup and then data quality was compared to data with common average derivation. The depth-frequency maps were generated according to preprocessing results for each patient and spectral characteristics of LFPs were explored at each depth across different tracks and different subjects. Spatio-spectral analysis of LFP was investigated to see whether LFP activity can be used for optimal track selection and STN border identification. Analysis show that monopolar derivation suffer from various artifacts and/or power line noise which makes the interpretation of target localization very difficult in most of the subjects. Unlikely, bipolar derivation helps to recover the neurological signals and investigation of signal characteristics. The frequency-vs-depth maps using a modified Welch periodogram with robust statistics, demonstrated that a median-based spectrum estimation approach eliminates outliers pretty well by preserving band-specific LFP activity. The results indicate that there is a clear oscillatory beta activity around 20 Hz in all subjects. 1/f normalization reveals the high frequency oscillations (HFOs) between 200-to-350 Hz in two subjects. It's noted that the optimal track selection is not consistent with the track having highest beta band oscillations in two out of five subjects. In conclusion, microelectrode-derived LFP recordings may provide an alternative approach to single unit activity (SUA)-based MER, for localizing the target STN borders during DBS surgery. Despite the small number of subjects, the present study adds to existing knowledge about LFP-based pathophysiology of PD and its target-based spectral activities.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…