• J. Appl. Physiol. · Jan 2007

    Cardiac mitochondrial damage and loss of ROS defense after burn injury: the beneficial effects of antioxidant therapy.

    • Qun Zang, David L Maass, Jean White, and Jureta W Horton.
    • Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9160, USA.
    • J. Appl. Physiol. 2007 Jan 1;102(1):103-12.

    AbstractMechanisms of burn-related cardiac dysfunction may involve defects in mitochondria. This study determined 1) whether burn injury alters myocardial mitochondrial integrity and function; and 2) whether an antioxidant vitamin therapy prevented changes in cardiac mitochondrial function after burn. Sprague-Dawley rats were given a 3 degrees burn over 40% total body surface area and fluid resuscitated. Antioxidant vitamins or vehicle were given to sham and burn rats. Mitochondrial and cytosolic fractions were prepared from heart tissues at several times postburn. In mitochondria, lipid peroxidation was measured to assess oxidative stress, mitochondrial outer membrane damage and cytochrome-c translocation were determined to estimate mitochondrial integrity, and activities of SOD and glutathione peroxidase were examined to evaluate mitochondrial antioxidant defense. Cardiac function was measured by Langendorff model in sham and burn rats given either vitamins or vehicle. Twenty-four hours postburn, mitochondrial outer membrane damage was progressively increased to approximately 50%, and cytosolic cytochrome-c gradually accumulated to approximately three times more than that measured in shams, indicating impaired mitochondrial integrity. Maximal decrease of mitochondrial SOD activity occurred 8 h postburn ( approximately 63.5% of shams), whereas maximal decrease in glutathione peroxidase activity persisted 2-24 h postburn ( approximately 60% of shams). In burn animals, lipid peroxidation in cardiac mitochondria increased 30-50%, suggesting burn-induced oxidative stress. Antioxidant vitamin therapy prevented burn-related loss of membrane integrity and antioxidant defense in myocardial mitochondria and prevented cardiac dysfunction. These data suggest that burn-mediated mitochondrial dysfunction and loss of reactive oxygen species defense may play a role in postburn cardiac dysfunction.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.