• J. Cardiothorac. Vasc. Anesth. · Aug 1999

    Review

    Anticoagulation and anticoagulation reversal with cardiac surgery involving cardiopulmonary bypass: an update.

    • G J Despotis and J H Joist.
    • Department of Anesthesiology, Washington University, St Louis, MO 63110, USA.
    • J. Cardiothorac. Vasc. Anesth. 1999 Aug 1;13(4 Suppl 1):18-29; discussion 36-7.

    AbstractAccelerated thrombin generation is central to the development of hemostatic abnormalities during cardiopulmonary bypass (CPB) that are associated with both thromboembolic complications and serious, abnormal bleeding. Thrombin not only converts fibrinogen to fibrin, but also activates platelets and coagulation factors V, VIII, and XI and causes release of von Willebrand factor from vascular endothelium. Thrombin can also downregulate the hemostatic system by inducing formation of platelet inhibitory agents, such as nitric oxide and prostacyclin, and release of tissue plasminogen activator, facilitating activation of protein C, and releasing tissue factor pathway inhibitor. Excessive thrombin activity may also result in substantial consumption of platelets, fibrinogen, and labile coagulation factors and abnormal bleeding. Elevated tissue plasminogen activator levels secondary to activation of the contact system and surgery catalyze the formation of plasmin, which also consumes or internalizes platelet glycoprotein receptors and coagulation factors V, VIII, and fibrinogen. Heparin can reduce the generation of and mediate neutralization of excessive and CPB-associated thrombin activity. Heparin anticoagulation is commonly monitored with the activated clotting time (ACT). However, the ACT may be prolonged by factors other than heparin during CPB, such as hemodilution and hypothermia, and therefore may not accurately reflect the extent of anticoagulation by heparin. Aprotinin, a nonspecific serine protease inhibitor used with CPB, can also prolong celite-based ACT values, rendering it less reliable for monitoring heparin anticoagulation. Therefore, several alternative anticoagulation strategies have been recommended when aprotinin is used, such as a higher celite ACT trigger (>750 seconds), monitoring of whole blood heparin concentrations (eg, >2.7 U/mL), or administration of heparin based on a CPB duration-dependent, fixed-dose regimen. Administration of heparin doses higher than those generally recommended, as guided by predetermined, patient-specific whole blood heparin concentration measurements during bypass, can reduce excessive thrombin-mediated consumption of platelets and coagulation factors as well as post-CPB blood loss and blood component transfusions. New modalities of improving suppression of excess thrombin generation during CPB include use of heparin-bonded CPB circuits, heparin cofactor II or related analogs, supplemental antithrombin III, direct thrombin inhibitors (eg, hirudin, argatroban), and inhibitors of the contact and tissue factor pathways. The safety and efficacy of these approaches remains to be established by additional, appropriately powered, prospective studies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…