• Spine · Dec 2003

    Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc.

    • Timothy Ganey, Jeanette Libera, Verena Moos, Olivera Alasevic, Karl-Gerd Fritsch, Hans Joerg Meisel, and William C Hutton.
    • Atlanta Medical Center, Atlanta, Georgia 30312, USA. Timothy.Ganey@tenethealth.com
    • Spine. 2003 Dec 1;28(23):2609-20.

    Study DesignDisc degeneration and osteoarthritis are diseases of the matrix. Chondrocytes that have been removed from damaged cartilaginous tissues maintain a capacity to proliferate, produce, and secrete matrix components, and respond to physical stimuli such as dynamic loading. A dog model was used to investigate the hypothesis that autologous disc chondrocytes can be used to repair damaged intervertebral disc.ObjectivesGiven the capacity for the cells in vitro to produce matrix molecules that would be appropriate for disc chondrocytes, the focus of the experiment was to investigate whether the cells would continue to sustain metabolic function after transplantation.Summary Of The Background DataNo evidence for long-term integration exists for cell transplantation in species other than rats and rabbits. Furthermore, no controlled studies of 1-year duration have been published.Materials And MethodsDisc chondrocytes were harvested and expanded in culture under controlled and defined conditions, returned to the same animals from which they had been sampled (autologous transplantation) via percutaneous delivery. The animals were analyzed at specific times after transplantation by several methods to examine whether disc chondrocytes integrated with the surrounding tissue, produced the appropriate intervertebral disc extracellular matrix, and might provide a formative solution to disc repair.ResultsIn the context of degenerative changes in an injury model: (1) autologous disc chondrocytes were expanded in culture and returned to the disc by a minimally invasive procedure after 12 weeks; (2) disc chondrocytes remained viable after transplantation as shown by Bromodeoxyuridine incorporation and maintained a capacity for proliferation after transplantation as depicted by histology; (3) transplanted disc chondrocytes produced an extracellular matrix that displayed composition similar to normal intervertebral disc tissue. Positive evidence of proteoglycan content was supported by accepted histochemical staining techniques such as Safranin O-Fast Green; (4) both type II and type I collagens were demonstrated in the regenerated intervertebral disc matrix by immunohistochemistry after chondrocyte transplantation; and (5) when the disc heights were analyzed for variance according to treatment, a statistically significantcorrelation between transplanting cells and retention of disc height was achieved.ConclusionsAutologous chondrocyte transplantation is technically feasible and biologically relevant to repairing disc damage and retarding disc degeneration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…