-
- G T Manley, L H Pitts, D Morabito, C A Doyle, J Gibson, M Gimbel, H W Hopf, and M M Knudson.
- School of Medicine, University of California San Francisco, Department of Neurological Surgery, San Francisco General Hospital, 94110, USA.
- J Trauma. 1999 Feb 1;46(2):261-7.
ObjectivesRecently developed polarographic microelectrodes permit continuous, reliable monitoring of oxygen tension in brain tissue (PbrO2). The aim of this study was to investigate the feasibility and utility of directly monitoring PbrO2 in cerebral tissue during changes in oxygenation or ventilation and during hemorrhagic shock and resuscitation. We also sought to develop a model in which treatment protocols could be evaluated using PbrO2 as an end point.MethodsLicox Clark-type polarographic probes were inserted in the brain tissue of 16 swine to monitor PbrO2. In eight swine, changes in PbrO2 were observed over a range of fractional concentrations of inspired O2 (FiO2) as well as during periods of hyperventilation and hypoventilation. In eight other swine, PbrO2 was monitored during a graded hemorrhage of up to 70% estimated blood volume and during the resuscitation period.ResultsWhen FiO2 was elevated to 100%, PbrO2 increased from a baseline of 15+/-2 mm Hg to 36+/-11 mm Hg. Hyperventilation while breathing 100% oxygen resulted in a 40% decrease in PbrO2 (p < 0.05), whereas hypoventilation increased PbrO2 to 88 mm Hg (p < 0.01). A graded hemorrhage to 50% estimated blood volume significantly reduced PbrO2, mean arterial pressure, and intracranial pressure (p < 0.01). Continued hemorrhage to 70% estimated blood volume resulted in a PbrO2 of 2.9+/-1.5 mm Hg. After resuscitation, PbrO2 was significantly elevated, reaching 65+/-13 mm Hg (p < 0.01), whereas mean arterial pressure and cerebral perfusion pressure simply returned to baseline.ConclusionDirectly measured PbrO2 was highly responsive to changes in FiO2, ventilatory rate, and blood volume in this experimental model. In particular, hypoventilation significantly increased PbrO2, whereas hyperventilation had the opposite effect. The postresuscitation increase in PbrO2 may reflect changes in both O2 delivery and O2 metabolism. These experiments set the stage for future investigations of a variety of resuscitation protocols in both normal and injured brain.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.